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WEIL-PETERSSON METRIC ON THE UNIVERSAL
TEICHMULLER SPACE I: CURVATURE PROPERTIES
AND CHERN FORMS

LEON A. TAKHTAJAN AND LEE-PENG TEO

ABSTRACT. We prove that the universal Teichmiiller space T(1) car-
ries a new structure of a complex Hilbert manifold. We define a Weil-
Petersson metric on 7'(1) by Hilbert space inner products on tangent
spaces, compute its Riemann curvature tensor, and show that 7°(1) is a
Kahler -Einstein manifold with negative Ricci and sectional curvatures.
We introduce and compute Mumford-Miller-Morita characteristic forms
for the vertical tangent bundle of the universal Teichmiiller curve fibra-
tion over the universal Teichmuller space. As an application, we derive
Wolpert curvature formulas for the finite-dimensional Teichmiiller spaces
from the formulas for the universal Teichmiiller space.
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1. INTRODUCTION

The universal Teichmiiller space T'(1) is the simplest Teichmiiller space
that bridges spaces of univalent functions and general Teichmiiller spaces.
Introduced by Bers [Rarbd [RarZd [RarZd], the universal Teichmiiller space
is an infinite-dimensional complex manifold modeled on a Banach space; it
contains Teichmiiller spaces of Riemann surfaces as complex submanifolds.
The universal Teichmiiller space T'(1) also came to the forefront with the
advent of the string theory. It contains as a complex submanifold an infinite-
diimensional complex Fréchet manifold M&b(S!)\ Diff . (S'), which plays an
important role in one of the approaches to non-perturbative bosonic closed
string field theory based on Kéhler geometry [BRXZA, IBRXZH|. The manifold
Méb(Sh)\ Diff 4 (S') — a homogeneous space of the Lie group Diff . (S1), also
has an interpretation as a coadjoint orbit of the Bott-Virasoro group, and
as such carries a natural right-invariant Kahler metric [, B2

The complex geometry of the finite-dimensional Teichmiiller spaces —
Teichmiiller spaces T'(I') of cofinite Fuchsian groups, has been extensively
studied in the context of Ahlfors-Bers deformation theory of complex struc-
tures on Riemann surfaces. In particular, A. Weil defined a natural Hermit-
ian metric on T'(I') by the Petersson inner product on the tangent spaces.
Called Weil-Petersson metric, it was shown to be a Kdhler metric by Weil
and Ahlfors. In his seminal paper [BhibZ] Ahlfors has studied the curva-
ture properties of the Weil-Petersson metric. In particular, he proved that
the Bers coordinates on T'(I') are geodesic at the origin, and computed a
Riemann curvature tensor of the Weil-Petersson metric in terms of multiple
principal value integrals. Using these formulas, Ahlfors proved that 7'(I")
has negative Ricci, holomorphic sectional, and scalar curvatures. Further re-
sults have been obtained by Royden [Rovid]. Wolpert re-examined Ahlfors’
approach in [FMaIRE]. He developed a different method for computing Rie-
mann and Ricci curvature tensors, and obtained explicit formulas in terms
of the resolvent kernel of the Laplace operator of the hyperbolic metric on
the corresponding Riemann surface.

Curvature properties of the infinite-dimensional complex Fréchet manifold
Méb(Sh)\ Diff 4 (S') have been studied by Kirillov and Yuriev X7, and
by Bowick and Rajeev [BRERZA [REXZH]. In particular, they computed the

Riemann curvature tensor of the right-invariant Kahler metric and proved
that M&b(S1)\ Diff 4 (S') is a Kéihler -Einstein manifold.
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Since both the finite-dimensional Teichmiiller spaces T'(I') and the ho-
mogeneous space Mob(S1)\ Diff; (S') are complex submanifolds of T'(1),
it is natural to investigate whether the latter space carries a “universal”
Kahler metric which can be pulled back to the submanifolds. The imme-
diate difficulty is that the universal Teichmiiller space T'(1) is a complex
Banach manifold, so that its tangent spaces do not carry Hermitian metric.
Nag and Verjovsky [NAGL] were the first to address this problem. They
have shown that the Kihler metric on Mob(S1)\ Diff +(S!) is a pull-back
of a certain Hermitian metric defined on a Hilbert subspace of the tan-
gent space at the origin of T'(1). The latter metric is analogous to the
Weil-Petersson metric on finite-dimensional Teichmiiller spaces. However,
finite-dimensional Teichmiiller spaces T'(I') embed into 7'(1) transversally to
the Hilbert subspace, so that the Weil-Petersson metric on T'(I') can not be
pulled back from T'(1). Nevertheless, following a suggestion by Velling, Nag
and Verjovsky [B2Z00] have shown that the Weil-Petersson metric on 7'(I')
can be obtained by a certain “averaging” procedure using Patterson’s uni-
form distribution of the “lattice points” of a cofinite Fuchsian group I in the
hyperbolic plane. The major open problem is to define the Weil-Petersson
metric on the whole space T'(1), to study its curvature properties, and to find
relation between curvatures of this metric and the Weil-Petersson metric on
finite-dimensional Teichmiiller spaces !.

An attempt to define the Weil-Petersson metric on the universal Te-
ichmiiller space based on the completion of diff(S*)/m&b(S1) 2in the Sobolev’s
3/2-norm was made in [52289]. However, the paper [SIZZ8Y] does not con-
tain a rigorous proof that is needed for introducing a Hilbert manifold struc-
ture on an infinite-dimensional manifold. Also, the identification between
the tangent space diff(S1)/mob(S!) and the space of holomorphic functions
on the unit disk made in [SZZ9Y] is not correct and actually introduces
Sobolev’s 9/2-norm rather than 3/2-norm. As the result, the corresponding
quasi-symmetric homeomorphisms of S1 are of class C3(S1).

Here we introduce Weil-Petersson metric on the universal Teichmiiller
space T'(1) and study its curvature properties. We prove that T'(1) carries
a new structure of a Hilbert manifold (in the underlying topology 7'(1) has
uncountably many components), and we define the Weil-Petersson metric
on T'(1) by Hilbert space inner products on tangent spaces. We re-examine
the Ahlfors original computation [BRiBZ] of the second variation of the hy-
perbolic metric and of the Riemann tensor for the finite-dimensional Te-
ichmiiller spaces in terms of the principal value integrals. We show how to
extend the Ahlfors” method to the case of the universal Teichmiiller space
and how to convert formulas using principal value integrals into closed ex-
pressions using resolvent kernel of the Laplace operator on the hyperbolic

ISee the remark on p. 136 in [SEE0].
2Here diff(S') and mé&b(S') are Lie algebras of Lie groups Diff 4 (S') and Mob(S?).



4 LEON A. TAKHTAJAN AND LEE-PENG TEO

plane. Our results extend the Wolpert’s formulas [MQIXE]| to the infinite-
dimensional Hilbert manifold 7'(1). We also prove that 7'(1) is a Kéahler -
Einstein manifold with negative Ricci and sectional curvatures. Using the
averaging procedure, we derive Wolpert’s curvature formulas [MalXdd] for the
finite-dimensional Teichmiiller spaces from the curvature formulas for the
universal Teichmiiller space. Finally, we introduce and compute Mumford-
Morita-Miller characteristic forms for the vertical tangent bundle associ-
ated with the fibration = : 7(1) — T'(1), where 7(1) is the universal Te-
ichmiiller curve. Here again we consider 7'(1) and 7 (1) as Hilbert manifolds
and show that the integration over the fibers operation, used in the definition
of Mumford-Morita-Miller characteristic forms, is well-defined.

This is the first paper in a series. In the subsequent paper we will con-
struct a K&hler potential for the Weil-Petersson metric on 7'(1) and will
study the properties of the period mapping.

Here is the more detailed content of the paper. In Section 2 we present
necessary facts from Teichmiiller theory, mainly following classical mono-
graphs by Ahlfors [ERIXA|, Lehto [E&EXA] and Nag [Nagly]. Namely, in
Section 2.1 we briefly cover: the main definitions, the group structure of
the universal Teichmiiller space T'(1), the Bers embedding, structure of 7'(1)
as an infinite-dimensional complex Banach manifold modeled on the com-
plex Banach space A. (D), and the basic properties of the universal Te-
ichmiiller curve m : 7(1) — T'(1). In Section 2.2 we realize T'(1) and 7 (1) as
homogeneous spaces of the group Homeoys(S!) of quasi-symmetric home-
omorphisms of S, and by using conformal welding we identify T(1) and
T (1) with the spaces of univalent functions on the unit disk D. We describe
the decomposition of the tangent bundle of 7 (1) over the fiber 7=!(0) and
present isomorphisms between the tangent spaces. Lemma B describing
a special property of the quasiconformal mapping with harmonic Beltrami
differential seems to be a new result. In Section 2.3 we present, in a suc-
cinct form, basic facts about the Teichmiiller spaces and Teichmiiller curves
of Fuchsian groups, including the definition of the Weil-Petersson metric,
and Patterson’s lemma on the uniform distribution of lattice points on the
hyperbolic plane. In Section 2.4 we collect necessary properties of the resol-
vent kernel G = %(Ao + %)_1 of the Laplace operator Agp on the hyperbolic
plane, and in Section 2.5 we present Ahlfors’ classical variational formulas.
In Section 3 we introduce new Hilbert manifold structure on 7'(1). Namely,
in Section 3.1 we define the Hilbert subspaces H~5!(D*) and Ag(D) of the
tangent spaces to 17'(1) and to A (D). In Theorem we Bl prove that the
differential of the Bers embedding 3 : T'(1) — A (D) is a bounded bijection
between these Hilbert spaces. In Section 3.2 we prepare all L2-estimates
used in Section 3.3. The main result there is Theorem BEZ — the existence
of the Hilbert manifold atlas for 7'(1). In Theorem B we prove that the
Bers embedding is also a biholomorphic mapping of Hilbert manifolds. In
Section 4.1, following [[E2alld], we recall the definition of the Velling-Kirillov



CURVATURE PROPERTIES OF THE WEIL-PETERSSON METRIC ON T(1) 5

metric on the universal Teichmiiller curve 7 (1) considered as a Banach man-
ifold, and in Section 4.2 we define the Weil-Petersson metric on the Hilbert
manifold 7'(1). In Section 5.1 we prove that Velling-Kirillov metric is real-
analytic on 7 (1) by explicitly constructing its real-analytic Kahler potential
— Theorem Bl We introduce Mumford-Miller-Morita characteristic forms
by considering 7 : T(1) — T'(1) as fibration of Hilbert manifolds. The lat-
ter property is crucial for the operation “integration over the fibers” (which
are non-compact) to be well-defined. In Theorem B we explicitly com-
pute Mumford-Miller-Morita forms in terms of the resolvent . This is an
infinite-dimensional generalization of Wolpert’s result in [MaIXf]. In Sec-
tion 6 we give a simple derivation of the second variation of the hyperbolic
metric — Proposition B=3. In Section 7 we prove that the Weil-Petersson
metric on 7'(1) is Kdhler and explicitly compute its Riemann and Ricci cur-
vature tensors, showing that 7'(1) is a K&hler -Einstein manifold. The main
results there are Theorem E=l and EEE. They are based on a more technical
Proposition = and Lemma B3 and the proof of the latter is presented in
the Appendix. Finally, in Section 8 we derive Wolpert’s curvature formu-
las [FAaIRH] for finite-dimensional Teichmiiller spaces from the corresponding
“universal” curvature formulas for 7'(1), obtained in Section 7.

Acknowledgments. We appreciate useful discussions with C. Bishop. The
work of the first author was partially supported by the NSF grant DMS-
0204628. The work of the second author was partially supported by the
grant NSC 91-2115-M-009-017. The second author also thanks CTS for the
fellowship to visit Stony Brook University in the Summer 2003, where part
of this work was done.

2. THE UNIVERSAL TEICHMULLER SPACE

2.1. Teichmiiller theory. Here we present, in a succinct form, necessary
facts from the Teichmiiller theory (for more details, see monographs [ERIXA,
LehX Nag®y] and the exposition in [ealld]).

2.1.1. Main definitions. Let D = {z € C : |z| < 1} be the open unit disk

and let D* = {z € C : |z| > 1} be its exterior. Denote by L*>(D"*) and

L*(D) the complex Banach spaces of bounded Beltrami differentials on D*

and D respectively, and let L>°(D*); be the open unit ball in L*=(D"). Two

classical models of the universal Teichmiiller space T'(1) are the following.
Model A. Extend every p € L*(D"); to D by the reflection

(2.1) pu(z) = @; , €D,

and consider the unique quasiconformal (q.c.) mapping w, : C — C, which
fixes —1,—7 and 1 (i.e., is normalized) and satisfies the Beltrami equation

(wu)i = N(wu)z .
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Here and in what follows subscripts z and z always stand for the partial

derivatives 8@ and %, unless it is explicitly stated otherwise. Due to the
z zZ

reflection symmetry (&) the q.c. mapping w,, satisfies

(2.2) ﬁ = @

and fixes domains D, D*, and the unit circle S'. For u,v € L*(D*); set
p~vif wy|s1 = wyls1. The universal Teichmiiller space T'(1) is defined as
a set of equivalence classes of normalized q.c. mappings w,,

T(1)=L>D")/ ~ .
Model B. Extend every p € L (D*); to be zero outside D*, and consider
the unique g.c. mapping w* which satisfies the Beltrami equation
wh =

and is normalized by the conditions f(0) = 0, f’(0) = 1 and f”(0) = 0.
Here f = w*|p is holomorphic on D and prime stands for the derivative. For
p,v € L(D*)y set p ~ v if wh|p = w”|p. The universal Teichmiiller space
T(1) is defined as a set of equivalence classes of normalized q.c. mappings
wh,

T(1)=L>D")/ ~ .

Since wy|s1 = w,|gt if and only if w”|p = w”|p, these two definitions of
the universal Teichmiiller space are equivalent. The set 7'(1) is a topological
space with the quotient topology induced from L>(D*);. Denote by £ (D*)
the subspace of L°(D*) consisting of real-analytic Beltrami differentials.
Every point in T'(1) can be represented by p € £°°(D*) [E&GXA, Sect. 111.1.1].

The space T'(1) has a unique structure of a complex Banach manifold,
such that the projection map

¢ L*(D) — T(1)
is a holomorphic submersion. The differential of ® at the origin
Do® : L= (D) — 1oT(1)

is a complex linear surjection of holomorphic tangent spaces. The kernel of
Dy® is the subspace N (D*) of infinitesimally trivial Beltrami differentials.
Explicitly,

N(D") =< pe L>(D") ://,uqbdz,z:Ofor all p € A;(D") 7,
]D)*
where d*z = dz A dy, z = x + iy, and

Ay (D) = ¢ ¢ holomorphic on D" : // |p|ld%z < oo
D*
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The Banach space of bounded harmonic Beltrami differentials on D* is de-

fined by

QD) = {p e L¥(D) =) = (1 - [21)%(5), 6 € Aue (D)},

where
A (D) = {(b holomorphic on D" : ||¢]lec = sup |(1 - |z|2)2¢(2)‘ < oo} .
z€D*

The Banach space Q~11(D*) is not separable. The decomposition
(2.3) L= (DF) = N(D°) @ Q1 (Dr)

identifies the holomorphic tangent space ToT(1) = L°°(D*)/N(D*) at the
origin of T(1) with the Banach space Q=11(D*). The universal Teichmiiller
space T'(1) is a complex Banach manifold modeled on Q~1:1(D~).

Remark 2.1. Traditionally, the universal Teichmiiller space is defined using
the complex Banach space L°°(D);. The reflection (E=H) establishes natural
complex anti-linear isomorphism between L*>(D*); and L* (D), and the
universal Teichmiiller space in the traditional definition is complex conjugate
to the space T'(1) defined above.

2.1.2. The group structure. The unit ball L>(D*); carries a group structure
induced by the composition of q.c. mappings. The group law

A=vxpt

-1
wos
= 0. The group law is given explicitly by

A= (L o,
1—pv (Wy): g
It follows from this formula that £°(D*); is a subgroup of L*(D");.
For every A € L>(D*); set [A] = ®(A) € T'(1). The group structure on
L (D*)y projects to T'(1) by [A] « [u] = [A * p]. For every p € L= (D"); the
right translations

1

is defined through w) = w, o w, ", where p~! stands for the inverse element

to p, ie., o pt

Ry :T(1) = T(1), [A]lr[A*p],

are biholomorphic automorphisms of 7'(1). The left translations, in general,
are not even continuous mappings (see, e.g., [E&RXA, Sect. [11.3.4]). For every
p € L (D*); the kernel of D, ® is the subspace DyR, (M (D")) of L*(D*)
and

TigT (1) = DoRy,) (ToT (1)) ~ DoR,, (Q~11(D")) .

1]
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2.1.3. The Bers embedding. Let A, (D) be the complex Banach space
A (D) = {(b holomorphic on D : |[¢]|oc = sup |(1 = [2]*)%¢(z)| < oo} .
z€D

The Bers embedding 5 : T'(1) < A, (D) is defined as follows. Denote by
S(f) the Schwarzian derivative of a conformal map f,

5 = ffz _5<];Z> |

For every u € L°(D*); the holomorphic function S(w*)|p € Ao (D) (by
Kraus-Nehari inequality it lies in the ball of radius 6 in A (D)). Set

A(lu]) = S(w[p).

The Bers embedding is a holomorphic map of complex Banach manifolds,
and its differential at the origin is

(2.4 Dos(u(z) = -2 [[ e,
)

(€—2)*
The complex-linear mapping Do induces the isomorphism Q~41(D*) =
A (D) of the holomorphic tangent spaces to T'(1) and A, (D) at the origin.
The mapping A : A (D) — Q™ HHD*), inverse to Dyf3, is given by

nz) = A@)(x) =~ (1 2P)?6 (1) &

According to the Ahlfors-Weill theorem, over the ball of radius 2 in A (D)
the map ¢ — [A(¢)] is the right inverse to 8, 5o A =id.

2.1.4. The complex structure. For every p € L*(D*); let U, C T'(1) be the
image of the ball of radius 2 in A, (D) under the map h;! = ®o R, 0A.
The maps h,, = h,oh, '+ h, (U,NU,) — h,(U,NU,) are biholomorphic as
functions on the Banach space A, (D). The structure of 7'(1) as a complex
Banach manifold modeled on the Banach space A, (D) is explicitly described
by the complex-analytic atlas given by the open covering

= | U

HELS(D* )y

with coordinate maps h, and transition maps h,,. The canonical projection
¢ : L°(D*)y — T'(1) is a holomorphic submersion and the Bers embedding
B :T(1) - A (D) is a biholomorphic map with respect to this complex
structure.

Remark 2.2. Since every point T'(1) can be represented by a real-analytic
Beltrami differential, it is sufficient to consider the atlas formed by the charts

(Uys hy) with p € L£52(D");.



CURVATURE PROPERTIES OF THE WEIL-PETERSSON METRIC ON T(1) 9

Complex coordinates on T'(1) defined by the coordinate charts (U, h,)
are called Bers coordinates. For every v € Q7 11(D*) set ¢ = DyB(v) and
define a holomorphic vector field % on Uy by setting

Dho (7)) = o

at all points in Uy ®. At every point [u] € Uy, identified with the corre-
sponding harmonic Beltrami differential p, the vector field 887,, in terms of
the Bers coordinates on U, corresponds to

&= Dby (52) = (Dubs (Duh) ™) (8) = Do (8.2 @) (DB (A(9)))

Using identification Q=11 (D*) ~ A, (D), provided by mapping Dyf3, we get

25) | = P (D ) = P (R ).
where

and P : L>°(D*) — Q~L1(D*) is projection onto the subspace of harmonic
Beltrami differentials, defined by the decomposition (EE3). Explicitly,

(27) o) = S [ M e,
J;

Remark 2.3. Right translating v € TyT'(1) defines a holomorphic tangent
vector

DoRgy(v) = (1~ [ul?) v o w, T2 & 1 m(1)
(wu)z
at every [p] € T'(1). In Bers coordinates on U, this tangent vector is repre-
sented by v € Q71(D*). However, the family {DoR},j(v)}jer() of holo-
morphic tangent vectors does not form a smooth vector field on 7'(1) since
the left translations are not continuous on 7'(1).

2.1.5. The universal Teichmiiller curve. The universal Teichmiiller curve 7 (1)
is a natural complex fiber space over 7'(1) with a holomorphic projection map
7 :T(1) = T(1). The fiber over each point [1] is a quasi-disc w*(D*) C C
with complex structure induced from C and

(2.8) T =A(lp),2) : W] € T(1), = € w(D")}.

The fibration 7 : 7(1) — 7'(1) has a natural holomorphic section given by
T(1) > [p] — ([, 00) € T(1) — “zero section”, which defines the embed-
ding T'(1) < 7T(1). The universal Teichmiiller curve is a complex Banach

3We identify holomorphic tangent space to A (D) at every point with A (D).
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manifold modeled on A, (D) & C %, and the mapping
T(1) x D" 3 (], 2) = ([u], w"(2)) € T(1)

is a real-analytic isomorphism.

2.2. Homogeneous spaces of Homeo,(S'). Let Homeoys(S!') be the
group of orientation preserving quasi-symmetric homeomorphisms of the
unit circle S! (see, e.g., [EaiXd] for the definition), and let Diff . (S1), M&b(S1),
and S! be the subgroups of Homeo,s(S!') consisting, respectively, of smooth
orientation preserving diffeomorphisms of S, of Mdbius transformations of
S1, and of rotations of S!.

Denote by U the set of univalent functions on D and let

D={feU: f(0)=0,[(0)=1,f'(0) =0, f admits a q.c. extension to C} ,
D= {feu: f(0)=0,f'(0) =1, f admits a q.c. extension to C} .
According to the Beurling-Ahlfors extension theorem, the maps
T(1) > [p—w'peD

and

T(1) 3 [1] =+ wulsr € Mob(S")\Homeoy, (5")
define bijections
(2.9) D & T(1) © Msb(S')\Homeoy, (S,

which endow the spaces D and Mob(S!)\Homeo,s(S1) with the structure
of complex Banach manifolds modeled on the Banach space A, (D). In
what follows, we will always identify the coset space M6b(S1)\Homeog, (S?)
with the subgroup of Homeoys(S') fixing 1, —1 and ¢, so that the bijection
T(1) & M&b(S')\Homeo,(S!) is a group isomorphism.

Remark 2.4. 1t is a non-trivial problem to describe the complex Banach
manifold structure of the spaces D and Mob(S1)\Homeo,;(S1) intrinsically,
without using the bijection (EH).

2.2.1. Conformal welding. According to the Beurling-Ahlfors extension the-
orem, for every v € Mob S*\Homeo(S!) there exists unique oo € Mob(S?)
which fixes 1, and univalent functions f and g on D and D*, satisfying the
following properties.

CW1. f and g admit g.c. extensions to C.
CW2. aoy=(g7to f)|s.

CW3. f(0) = 0, f'(0) = 1, f”(0) = 0.
CW4. g(o0) = .

*Here €\ {0} is identified with C via the conformal map z  1/z.
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The factorization CW2 is known as conformal welding. For v = w,|s1,
[ € T(1), f=w'pand g = (w*ow;' oa™!)|pr, so that g(D") = w" (D).
Here w* is normalized so that f satisfies CW3 and @ € M&b(S!) is uniquely
determined by the conditions «(1) = 1 and CW4. For [u] € T'(1) we will
always denote v, = (aow,)|st, f* = f and g, = ¢, so that

Vo= (QQIOf“)|51-

Slightly abusing notations, we will denote by v, a q.c. extension of v, = (ao
w,)|s1 € M6b(S')\Homeoys(S!) given by cow,,. Since « € M8b(S!) fixes 1,
the q.c. mapping v, satisfies reflection property (B8 and the factorization

(2.10) Yo =05 o f*,
where f# = w* and g, = w” o w;l oa~!. We will distinguish between
v, € Mob(S!)\Homeoy, (S!) and its q.c. extension by explicitly specifying
either the property CW2 or the factorization (E=H).

The following result will be used in Section 3.

Lemma 2.5. Let v, = oo w, be the q.c. mapping introduced above. Then
Jor every p € Q7 LHD); = QLY D*) N L>(D*);y the mapping v, fizes 0
and 0o.

Proof. By the reflection property (&) and the factorization (E=H), it is
sufficient to prove that f* = w* fixes co. Denote

y=jovyuoj, g=joguoj, [f=jofloj j(u)= HOJ]—
zZ

where j(z) = 27!, The factorization (E=) for v, gives v = g~'o f, and the
property CW3 for f* yields the following Laurent expansion of f at oo,

ay as
2.11 = — 4+ =+
(2.11) fA =242+ 54

We will prove that f(0) = 0 for u € Q~1!(D*); by exploiting the argument in
Royden-Earle’s proof of the Ahlfors-Weill theorem, as presented in [Nag&¥,
Sect. 3.8.5].

Namely, f satisfies the Beltrami equation with the Beltrami differential
v = j*(1)|p, which is supported on D. The fundamental theorem from the
theory of q.c. mappings (see, e.g. [ARIXZ]) asserts that f admits the series
representation

(2.12)  f(2) =2+ P(v)(2) + P(vH(v))(2) + P(vH(vH (v)))(2) + - - -,
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which is uniformly and absolutely convergent on C. Here for h € C'*(D) we

denote
1 h(C)
e
D

o:—i/m/%d%

where the latter integral — the Hilbert transform, is understood in the
principal value sense. Since v has compact support, it immediately follows
from the definition of the operators P and H that the series (E=&@) has
the Laurent expansion (E=&) at oo. We will prove that for v € Q~11(D)
cach term of this series vanishes at z = 0. Representing v(z) = —3(1 —
|21%)2 3°°% @, 2" and using polar coordinates, we get for any (n—1) — iterate
of the operator vH, n > 1,

P(VH(VH (¥))))(0)

B Zml’ amnr;nl'i'l Lopmtlemimitn o e—imnbn
m rlewl 7‘26202 rief1)2 L (rpeifn —r,_qetfn-1)2
(1—r))2. . (1= r2)%drdby .. .dr,db,

o0

= E Gy - -amnIml,...,mnv

M1 ye..,Mp=0

where each integral in the definition of H is understood in the principal value
sense. The interchange of the orders of the summation and integration can
be easily justified. For fixed ry # 0,11 # ro,rg # ra, ..., Ip_1 # I'n, let

Loy (P15 )
27 27 —zml 01 . e—zmnﬁn d01 . dan
r1ef (rgetfz — rieif)2 . (rpetfn —p,_jetfn-1)2

A change of Varlables O — 0, +6, k=1,...,n gives
—i(mi+...+mn+(2n-1))

Ly (1, yrn) =€ €Im17,,,7mn(r1, R A

Since all my, > 0 and 2n—1 > 0for n > 1, we have ¢~/ Ttmat(@n-1))0 £ |
and hence

Loy (P10 oy) = 0.
This proves that all I,,,, ., vanish and, therefore, f(0) = 0. O

Remark 2.6. Since P(f), = H(f), it also follows from the proof that f,(0) =
1.

Similar to (B2 , there are bijections
D & T(1) 2 5'\Homeo,,(S1),
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where we always identify the coset space S1\Homeoys(.S') with the stabilizer
of 1 in Homeog,(S!) (see, e.g., [&aid]). For every v € S\Homeoy,(S!)
there exist unique univalent functions f and ¢ on D and D", satisfying the
properties CW1, CW4 and
CW2'. v = (g7 0 f)]s:;
CW3'. f(0)=0, f'(0)=1.
Namely, the fibration 7 : 7(1) — T'(1) corresponds to the fiber space
S\ Homeoys(S!') over M6b(S!')\Homeoys(S') with the fibers isomorphic to
ST\ M&b(S1) ~ D*. The points in the fiber at [] € T(1) correspond to the
points @, 07y, € ST\Homeo,s(S'), w € D" with®

l—wl-zw

Uw(z)_l—ﬂ) Z—w

c S™\ Masb(sh).
Using property CW2 for 7, we get the factorization CW2/,

y=0wov,= (97" 0 f)ls,

where

f=Xuo " g=Xsoguoay’,
and

Aw(2) = szzﬁ, Cuw = _gu(lw)'

Since (g, 0 o5')(00) = g.(w), the functions f and g satisfy the properties
CW3’' and CW4 respectively, and the mapping

T(1) > ([, gu(w)) —=vy=0y 07, € Sl\Homeoqs(Sl)

establishes the isomorphism 7 (1) = S*\Homeo,s(S!).
As before, we will also denote by 7 a q.c. extension of v € S\ Homeo,(S?!)
which satisfies the reflection property (B8) and admits the factorization
~1
v=9 olf.

Remark 2.7. Tt is known [EEXd that Diff (S1) is an infinite-dimensional
Lie group and homogeneous spaces Mob(S1)\ Diff 4 (S') and S\ Diff  (S1)
are infinite-dimensional complex Fréchet manifolds. In this case conformal
welding readily follows from the Riemann mapping theorem without using
q.c. mappings [lKaxXd]. Note that our convention for the conformal welding
is different from that in [KazXd]: we are using right cosets instead of left
cosets.

The bijection T (1) =+ S'\Homeo,,(S!) endows the universal Teichmiiller
curve 7 (1) with the group structure. Explicitly,

([N, 2) = (], ¢) + ([l w) ™,

"Here the subscript w does not stand for the derivative.
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where

(=K -
(2.13) A_<1_W 7_)07 !
and
(2.14) 2= (w/\ oo (w”)_l) ©).

Here 7 is a q.c. extension of 0,07, u = g7 (w), and the point ([A], 2) € T(1)
does not depend on the choice of the extension 7.

2.2.2. The horizontal and vertical subspaces. The right translations R((,) .y :
T(1) = T(1) are biholomorphic automorphisms of 7(1) [B&EZd]. The holo-
morphic tangent space to 7 (1) at ([¢], z) is identified with the holomorphic
tangent space at (0, c0) — the origin of 7 (1) by

T, T (1) = D(o,00) B(11,2) (T(0,00)T (1)) = Ti0,00)T (1).

The holomorphic tangent space at the origin naturally splits into the direct
sum of horizontal and vertical subspaces,

Ti0,00)T (1) =Q~H1(D*) @ C.

The identification of holomorphic tangent spaces provides a natural splitting
of the tangent space at every point in 7 (1) into the direct sum of horizontal
and vertical subspaces. Lifts of horizontal and vertical tangent vectors at
the origin of T(1) to every point in the fiber at the origin are explicitly
described as follows.

TV1. Let u € Q7H1(D*) C T{o,0)7 (1) be a horizontal tangent vector to
T (1) at the origin. A curve ([tu], 2(t)), 2(0) = z, which defines the
horizontal lift of u to the point (0,z) € 7(1) in the fiber #=1(0) at
the origin, for small ¢ is given by the equation

([u(®)], 00) # (0, 2) = ([tn], 2(1))-
Using (=), (BE=E¥) and Lemma B2 we get

—1y;
) = (o) =t 0 T and ) = (),
0z
Thus the horizontal lift of 1 € T(( )7 (1) to every point in the fiber
(0,2) € #71(0) is the vector field

Ty = 8% O—I-u’)“(,z)aa—z7 where ﬂ)“(z) — d_Z(())

(cf. [RRIRH]). At point (0,z) € #71(0) the vector field 7, is identified
with the horizontal tangent vector (o7 ")*u € T(g )T (1).

z

TV2. Let 1 € C C T{g,)T (1) be the vertical tangent vector to 7(1) at
the origin, given by the value of the vector field 9, = 88—2 at z = oc.
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A curve defining the right translate of 1 to the point (0,2) € 7 (1)
in the fiber #71(0) at the origin for small ¢ is given by the equation

(Ovt_l) #(0,2) = (0, 2(¢)),
and it follows from (&) that

dz 1—2)(1— |2

CYIERIEICS
Thus the right translate of 1 € T )7 (1) to the point (0,z) €
771(0) is the vector (1_2()(71?'2'2)82 at (0,2). As the result, the vector

1-%)
field 9, at every point (0,z) € #71(0) is identified with the vertical

tangent vector

(1-2)
(=)0~ =P)

2.2.3. The isomorphisms of the tangent spaces. The real tangent vector
space Ty S'\Homeo,,(S!) to S*\Homeo,,(S') at the origin is identified
with the subspace of Zygmund class continuous real-valued vector fields
u=u(f)L on ST (see, e.g., [ealid] for the definition), satisfying

/027r u(6)d6 = 0.

In particular, the Fourier series u(f) = 3", ., c,e™” is absolutely convergent.

For |z| =1 set
w(z) =1 Z cp 2"
neZ\{0}
The function % on S admits the decomposition
U=1uy +u_,

where uy and u_ are boundary values of functions holomorphic on D and
D* respectively and u4(0) = 0. Explicitly,

o0

uy(z) =t Z cn 2"
n=1
o0

u_(2) =iy c_,z' "
n=1

It is a difficult problem to characterize the Zygmund class in terms of the
Fourier series (cf. Remark EZ8). On the other side, in terms of the Fourier
series the almost complex structure J on Ty S'\Homeo(S') is explicitly
given by the classical conjugation operator

d - od
s nd — nd
Ju=1 E sgn(n)c,e 70 for u E Cpe 20

neZ\{0} neZ\{0}
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Remark 2.8. Note that our definition of the operator J differs by a nega-
tive sign from the definition in EERA, REEH] for the homogeneous space
ST\ Diff; (S1).

The holomorphic and anti-holomorphic tangent vectors at the origin are

00 -1

— o d ; Cd
V:u ZJHZ;%@M@ and v:u—l—zJu: Z cneme—.

2 2 dé

For every smooth function F in a neighborhood of the origin in 7 (1) and
u € T3 SY\Homeo,,(S!) set
d

Flu] = n

F(h,

t=0

where 7; is a curve in S'\Homeo,(S!) with the tangent vector u at the
origin. Corresponding directional derivatives of F at the origin in 7(1) in
the holomorphic and anti-holomorphic directions v and v are defined by

(2.15)

OF () :% (Flul — i F70)), and OF(5) = % (Flu) + i FLa])
For s € R let
H (S = {u = Z aneme% : Z |n|*|a,|?* < oo}

be the Sobolev space of complex-valued vector fields on S1. The properties
of tangent spaces TpS'\Homeo,;(S'), ToD and To Mob(S!)\Homeo,s(S!),
which will be used in Section 5, can be succinctly summarized as follows
(see el for details).

TS1. Under the R-linear isomorphism 755 S*\Homeo,, (S') = ToD

u(f) = Z ene™ s uy (2) = ZZ e, 2"t
n€Z\{0} n=1
and flp = g, dolpr = —u_, where
. d d
f = _ft ) g = =0t )
dt’ |,_q dt” |, _q

vi = g; ' o fl is a smooth curve in 7 (1) tangent to u at the origin,
and do(z) = §() — §(o0)=.
TS2. Under the R-linear isomorphism

T Mob(S1)\Homeo,s(S') & ToT(1) =5

. 3
u(f) = Z cne™ d:;_ (z) = zZ(nS — n)c, 2"
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TS3. If N
$(2) =) (0 = n)an2""? € As(D)
n=2
then

o0
Zn25|an|2 < oo forall s<1.
n=2

TS4. T5 SY\Homeoy, (S1) C H*(S?) for all s < 1.

2.3. Teichmailler spaces and Teichmiiller curves of Fuchsian groups.
Let I' be a Fuchsian group, i.e., a discrete subgroup of PSU(1,1). Let

~7
L=, 1) = {,u € L>=(D) :,uo'yl/ =pu forall e F}
v

be a space of bounded Beltrami differentials for I' and
LD, 1)y = L= (D");n L>=(D", T,

be an open unit ball in L*(D*,I'). The Teichmiiller space of the Fuchsian
group [' is defined by

() = L=, )1/~

where the equivalence relation is the same as the one used to define the
universal Teichmiiller space T'(1) in Section EEX The Teichmiiller space
T(I') has a natural structure of a complex Banach manifold such that the
tangent space at the origin of T'(I') is identified with the Banach space
Q=YD T) of bounded harmonic Beltrami differentials for I,

Q~'HDF, 1) = Q VDY) N L (DA, T).

For every Fuchsian group I' the canonical embedding T'(I') — T'(1) is
holomorphic, so that the universal Teichmiiller space T'(1) contains all Te-
ichmiiller spaces T'(I') as complex submanifolds. The universal Teichmiiller space
T(1) is the Teichmiiller space for the trivial Fuchsian group I' = {1}.

The inverse image of T'(I') under the projection map 7 (1) — T'(I') is called
the Bers fiber space BF(I'). The quasi-Fuchsian group ['* = w* ol'o (w*)~!
acts on the fiber w*(D*) at the point [p] € T'(I'). The Teichmiiller curve
of the Fuchsian group I' is the fiber space T (I') over T'(I') with the fiber
[“\w*(D*) at the point [u] € T(T).

The domain D* is a model of the hyperbolic plane H?. The hyperbolic
(Poincaré) metric on D* — a Hermitian metric of constant Gaussian curva-
ture —1, is

4|dz]?

(1= l2?"

and the hyperbolic area 2-form is p(z) d*z. The Fuchsian group I is of finite
type (cofinite) if the corresponding Riemann surface — the orbifold I"'\D*,
has a finite hyperbolic area. In this case, the Teichmiiller space T'(I') is a
finite-dimensional complex manifold with a natural Hermitian metric, called

(2.16) ds* = p(2)|dz|* =



18 LEON A. TAKHTAJAN AND LEE-PENG TEO

Weil-Petersson metric. It is defined as Petersson’s inner product on tangent
spaces T, T'(I') ~ Q~1(D*,T,), where [u] € T(I') and '), = wy oo wy

n
For p,v € TyT(T'),
{pv)wp = // prp(z)d?z.
]D)*

The Weil-Petersson metric on T'(I') is a Kéhler metric.
The following result, due to Patterson [Eatdd], will be used in Section B
Here we present it in a convenient form as in [iLealld].

Lemma 2.9. Let I' be a cofinite Fuchsian group and h € L™ (D", p(z)d%z)
be I'-automorphic, i.e., ho~vy =h for all v € I'. Then

J[ 1oz = tim 2D [ e
D}

'\D*
where D = {z € D* : |z| > r}, A(I'\D*) is the hyperbolic area of the

r

Riemann surface I'\D*, and A(D}) is the hyperbolic area of D .

2.4. Resolvent kernel. Let
(2.17) Ag = —p(2)710.0;

be the Laplace-Beltrami operator of the hyperbolic metric on D, acting on
functions. It is well-known (see, e.g., [Hel/tl LanXT]) that the differential
expression (EELd) defines unique positive, self-adjoint operator on the Hilbert
space L?(D, p(z)d?z), which we still denote by Ag. Let

G=4(Bo+3)"
be (a one-half of) the resolvent of Ag at the regular point A = —1.
Remark 2.10. Note that the Laplace-Beltrami operator in [Hei/d, KanXd]| is

4Ap, so that the regular point A = —% for the operator Ag corresponds to
A = —2 for the Laplace-Beltrami operator in [Her((, Eanxd].

The resolvent G is a bounded integral operator on L(D, p(z)d?z) with
the kernel

2 1 1
(2.18) Glzyw) = 2t g B L

27 U

1
ﬂ_?
where u(z, w) is a point-pair invariant on D,
|z — w]?
(1= [=1%) (1 = |w]?)’
The resolvent kernel (7(z, w) has the following properties (see, e.g., [HEL(U]
and [E30X4, Sect. X1V.3]).

RK1. G is symmetric, G'(z,w) = G(w, z), and is a point-pair invariant,
G(vz,vw) = G(z,w) for all v € PSU(1,1).
RK2. G(z,w) is positive for all z,w € D.

u(z,w) =
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RK3. If ¢ € BC*(D) — the space of smooth bounded functions on D,
then the integral

1) = [ [ G wgtwiptu)de
D

is absolutely convergent for all z € D and f = G(g) € BC™(D)
satisfies the differential equation

2(Ao+3) (f) =9
Conversely, if f € BC®(D) and g = Q(AO—I— %) (f) € BC™(Dy,

then f=G(g).
//G(Z,w)p(w)dzw = 1.
D

RK4. For all z € D,
The last property immediately follows from RK3 since
2 (AO + %) (1) =1,

where 1 is a constant function equal to 1 on D.
The resolvent kernel GG of the Laplace-Beltrami operator on DF is given
by the same formula (B2 and satisfies the properties RK1 - RK4.
When I'is a cofinite Fuchsian group, we denote by G the one-half of the
resolvent of the Laplace-Beltrami operator on the Riemann surface I'\D at
= —1. It is a bounded integral operator on L*(I'\D, p(z)d*z) with the
kernel

(2.19) Gr(z,w) = ZG(Z,'yw), z,w € D,
~er

and it enjoys all the properties RK1-RK4. The corresponding resolvent
kernel on I'\D* is given by the same formula with z,w € D*.

Remark 2.11. The operator Gr plays a prominent role in the Weil-Petersson
geometry of the finite-dimensional Teichmiiller space T'(I") [MQIXH].

2.5. Variational formulas. Here we collect necessary variational formulas.
To simplify the computations in the following sections, we will use different
realizations of the hyperbolic plane H?, given either by the unit disk D or
its exterior ¥, or by the upper half-plane U.

Let [ and m be integers and I' a Fuchsian group (we will be primarily
interested in the cases when I' = {1}, i.e., is a trivial group, and when T is
a cofinite Fuchsian group). Using the model H? ~ D, tensor of type (I, m)
for I' is a C'"*°-function w on D satisfying

l

w(y2)Y' ()9 (z) =7(z) for all y € T.
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-1

Let w*® be a smooth family of tensors of type (I,m) for I';, = w., o I'ow_/,

where € Q71D T') and ¢ € C is sufficiently small. Set

(W) (w7) = @ 0 we(wey) ) (Wers) )™

which is a tensor of type (I, m) for ' — a pull-back of the tensor w® by
Wey. Lie derivatives of the family w® along vector fields d/0¢, and 0/0¢,
are defined in the standard way,

0

L,w=—
u Jc le=0

(wep)*(w®) and Lzw = EE

(wep) ™ ().
When w is a function on T'(I') — a tensor of type (0,0), the Lie derivatives
reduce to directional derivatives

Lyw=0w(p) and Lyw = 0w(ji)

— the evaluation of 1-forms dw and dw on the holomorphic and antiholo-
morphic tangent vectors p and g to T'(I') at the origin. Corresponding real
vector fields 8% are defined by

o0 _ 0,0
ot, 0z, ' 0z,

0 (o 0N 0 1
e, 2\ 0t, Oty oz, 2
For the model H? ~ U we have

220)  fenls) = [[ R ) a0 e
U

so that

srwa@) = =2 [[ R (0,2, 0,0 i@ i@ e
U

where the q.c. mapping w., is normalized by fixing 0,1, cc and the kernel

R is

B z(z = 1) 1 z—1 z
R(Z7u)_(u—z)u(u—1)_u—z+ u w—1
Setting
d d
Flu] = o e and - Qu] = o e

we get from (E=2)
(2:21) Flulz) == 1 [ [ Bz an(w i,
U

ee) =~ - [[ R wila
U
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The function ®[u](z) is holomorphic on U and satisfies

Ol // L .

As it follows from (E=Z3), the projection P : L>°(U) — Q=11 (U) is given by

(222 <Pu><z>=—3<z;z> ||
U

Equivalently, for u(z) = 2
The function F[u] satisfies I’ [ IE
half-plane U .

Lemma 2.12. For u € Q_l’l(U) and z € U,
lim // d2 = lim // =0,
e—=0 u — Z e—0
U(z,e)
where U(z,e) = U\ {u eU:|u—z <&}
Proof. The proof of the first formula essentially follows the classical Ahlfors’

proof in [ARIXA Lemma 2 in Sect. VI D] by using p(u) = _(u—Za)Z) ¢(u) with
¢ € Ax (U), the identity

. — 1]

and the Stokes’ theorem. The second formula is proved similarly. O

¢(z) w
pwon U, and is holomorphic on the lower

Another classical result of Ahlfors [ARIET] is the following.

Lemma 2.13. For y € Q 11 (U) and z € U,

Fiule) = E N 1 - 9@ a0,
where ®(z) = O[u](2).

Remark 2.14. 1t follows from Lemma Bl that F[u],., = 0 for p € Q~HY(U),
in agreement with Lemma EZ3

Corollary 2.15. For y € Q™'Y (U) and z € U,

4/ <u—5>(<?—z>3d2“: .

Proof. Using (E=Z0), we have

F) - EE - - 9 - 30

// u—i_qj)—g Z)Sdzw‘
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For p € L*>(U); set

_ (wp)u(u)(wy)o(v)

) = an o (u, v :(
Ku( ) ) (wu(u)_wu(v))z d Ku( ) ) (wu(u)_wu(v)) .

We have from (EZZ8) the following formulas [ALIEZ]

(2.23) % Kep(zyu) = — & / / H(O) K o (2, 0) K oy (v, 1) 20,
U

T
9 Koz = — l// (0] Ko (2, 0) Ko (6, 1) d2o
e e\ - T K epul#;s epu\Us )
U

and

(2.24) %I(W(Z,u) . % / / 10V K oy (2, 0) K (0, 1) o,
U
o
a—glﬁm(z,u) === p(v)Keopy(z,0) K., (0, u) d*v,
U

where the integrals are understood in the principal value sense.

For the model H* ~ D the q.c. mapping w, is normalized by fixing

—1,—1¢,1. The kernel R is given by

(z+1)(z+i)(z—-1)

B = e+ Dt 9 - 1)

and formulas similar to (E=Z8) hold for I’ and ®. In particular, let f be
a q.c. mapping such that flp € D, and let u be a Beltrami differential
supported on the quasi-disk Q* = f(D*). Let vy, be the solution on C of

the Beltrami equation
(Um)i = tﬂ(”m)zv
satisfying vy, (0) = 0,v7,(0) = 1 and vy, (0) = 0. Then

Ut#«
t=0

S|

is a holomorphic function on Q = f(D) and

(2.25) Oszs(2) = —g / / (u“ Euz))4d2u.
!
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3. T(1) As A HILBERT MANIFOLD

Here we endow 7'(1) with a structure of a complex manifold modeled on
the separable Hilbert space

A3(D) = ¢ ¢ holomorphic on D : H¢H2_/ |¢|2 —1 s < oo

of holomorphic functions on D. In the corresponding topology, the universal
Teichmiiller space T'(1) is a disjoint union of uncountably many components
on which the right translations act transitively.

3.1. Hilbert space structure on tangent spaces. Let
Ay(D*) = { ¢ holomorphic on D" : ||¢||3 = / ||?p~ 1 (2)d*2 < 0

be the Hilbert space of holomorphic functions on D*.

Lemma 3.1. The vector spaces Az (D) and Az(D*) are subspaces of A (D)
and Ay (D) respectively. The natural inclusion maps Ay(D) — A (D) and
Ay(D") — A (D*) are bounded linear mappings of Banach spaces.

Proof. 1t is sufficient to consider only the spaces of holomorphic functions
on D. For every ¢ € Ay(D) let ¢ = > "7, (n® —n)a,z"~% be the power series
expansion. Then

o0

2 _ 2 —12 _ T 3 2
61 = [[ 167071 = 5 50— wla
D n=2
and by the Cauchy-Schwarz inequality,
|6(2) = | (n® = n)a,z""?
n=2
o 1/2 /o 1/2
< (Z(HS - n)lanlz) (Z(n3 - n)lZV”‘“)
n=2 n=2

for every z € D. Since

G 3 2n—4 __ 6
07 = mP = e

n=2

6l = sup (1 0] < 4 2 1ol

we have
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Similarly, let
H™ YD) =< = p~'¢, ¢ holomorphic on D : ||u]|3 = // l1)?p(2)d*z < oo
D

and

H™ 'Y DM =4 = p~'¢, ¢ holomorphic on D" : ||u||3 = // l1)?p(2)d*z < oo
D*

be the Hilbert spaces of harmonic Beltrami differentials on D and D* re-
spectively. It follows from Lemma EZ that the natural inclusion maps
H= YD) — Q~Y4(D) and H=HY(D*) < Q~L1(D*) are bounded and un-
der the Bers embedding D3 : H=1HD*) =5 Ay(D) — A (D).

Remark 3.2. Tt follows from the proof of Lemma EZl that every u € H~4(D)
(respectively in H~11(D~)) satisfies

lim p(z) =0.
|z| =1
Indeed, for given € > 0 let N be such that
(n® — n)|a,|* < e.
n=N
Then
N-1
()] <1 = 1292 | 3 (0 = m)a, 22
n=2
00 /2 / 1/2
- )2 (Z<n3 - n>|an|2) (ZM - n>|z|2”-4)
n=N n=2
N-1
<1 =12%2] > (0® = nyanz""?| + Ve,
n=2

so that
limsup |u(2)] < V6e.

|z| =1

Since ¢ is arbitrary this proves the assertion.

For every [u] € T(1) let DoRp, (H™1(D")) be the subspace of the tan-
gent space Tp, T (1) = DoRp,) (Q~51(D*)) with a Hilbert space structure
isomorphic to H~11(D*). Let D7 be the distribution on T'(1), defined by
the assignment

T(1) 5 [u] = DoRyy (H™HH (D7) C TjyT(1).
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Similarly, let ©4 be the distribution on A., (D), defined by
Ae(D) 3 ¢ — A3(D) C TyA (D) ~ A (D).

The next statement asserts that under the Bers embedding 8 : T'(1) —
Ao (D) the distribution D7 is isomorphic to the restriction of the distribu-

tion ® 4 to B(T'(1)).
Theorem 3.3. For every [u] € T(1) the linear mapping
Do (B0 Rpyy) : HV1(D*) — Ay(D)

is a topological isomorphism.
Proof. Let v € H=HYD*). Set Wy = Wyywy = Wy 0w, and consider the
factorization vy = ayow; = gt_ o f! associated with the q.c. mapping w; by
). Let vy = flo f~1, where y = aow, = g~ o f is the factorization for
wy, and set Q = f(D) = g(D), Q*—f(]]])*)_g( ). Since

B[ty + u]) = S(f1) = S(ve) o f 2+ S(f),
we have

. 2 .

Dy (5 o RM) (v) = %‘t:o (ft) = 0,0 ffZ, where ©= 7 t:ovt'
The q.c. mapping v; is holomorphic on € and satisfies v; 0 § = g¢ 0 vy 0 wyy,
where § = g o a. Since g; and g are holomorphic on D*, the Beltrami
differential of v; is given by

d

0, z €9,
t~ — ~—1
"B, e

9z =z

It follows from (EZZ3) that
(3.1)

Do (50 Bya) ) (1)) (1 () = o) = -2
).

Let p1(2) = (po F™)()ITH ) and pa(z) = (90 g™)(2)]g=' (=) be the
hyperbolic metric densities on the domains €2 and * respectively. Classical
inequalities (see e.g., [LehXd [Nag&H])
1
— < 7722(2),02(2) < 1, 1=1,2,
16
where 71(z) and n3(z) stand, respectively, for the distances of z € Q and

z € Q* to the quasi-circle f(S!), yield the following estimates (cf. [Nagsd,
Sect. 3.4.5])

/Q/ |u—z|4 - // |U—Z|4 - 2772( E < 8mpa(u), u € QT

|z—u|>n2 (u)
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and

From here it follows

HDowoRM>@m%=[ﬂDowoRMMmVn4f2=/]wmA%;w%
Q
62 | 2d2
<_
—WWK/“ [/w—zﬁ// w—zﬁ
62 2d2 ~
[//' w—zw @z <65 [ [1p@lpa(wde
Q*
=6* . 87 // lv2p(u)d?u = 2304||v|3.
]D)*

To prove that the mapping Dy (5 o RM) is onto, we adapt to our case
Bers’ arguments, as presented in [Nag8¥, Sect. 3.5]. For ¢ € Ay(D) set
q=(¢of N (f71)? and choose p in the equivalence class of [u] € T(1) to be
the conformally natural extension of (¢ 1o f)|s1, constructed by Douady and
Earle [LERE]. Let h be the corresponding quasiconformal reflection [[ERXH]
on C which fixes the quasi-circle f(S'). According to the Bers reproducing

formula [Beriid],

52) _ 3 // (= M),

Analogously to L (D*) and Q~1!(D*) consider the Banach spaces L>(2*)
and

Qb = {,u € L(Q") : p = 4p3'q, ¢ is holomorphic on Q*},

and denote by P the corresponding projection P : L®(Q*) — Q~51(Q*).
The mapping

—

g—l)/
gLy
establishes the isomorphisms L°(D*) >~ L*(Q*) and Q~H1(D*) ~ Q~11(Q7),
and P = (§*)"' o Po g*. Define v € Q~11(D*) by
S~y — I 1 — *
@006 = PGl = b)) ) e a7 @)
The comparison between (B&) and (Bl) shows that
Do (BoRpy) (v) = ¢.

@7 ) = o g™

A
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To prove that v € H~11(D*) we use the Earle-Nag [FEERRH] estimate,

(3.3) < hE P h()pa(z) <, 2 e,

where the constant C' depends only on ||u|e.. Since operator P also gives
the orthogonal projection of L2(2*, p3(2) d*z) onto H=11(Q*), we get by the
Earle-Nag inequality

J[wo) z—//| CITABIE
J;
< / 1) = h)heta) Poatc) s
)

¢ / / lg(h(2))h=(2) 2 pT ((2)) 2.
.

Since h is sense reversing, for

>
—

Rl

>
—

wl |

we have |||/ < 1. Now

/ [l na)Por o

/ |(] |2 —1 (h oh”™ )( )h;1(2)|2(1_ |H|2)d22’

|‘] —1 pe:
/ |m|21 ()"

SCl/ l9(2)Pp1(2) " d?z = Ch|6]]3 < oo,

so that [[v]|y < Cal[¢||2. This also proves that the inverse map to Dy (5 o Ry,)
is bounded, so that Dy (5 o RM) is a topological isomorphism. (|

Remark 3.4. 1t follows from the proof of the first part of Theorem Bl that
Dy (5 o RM) = Dy(Bo®oR,) extends to a bounded linear operator in

L?(D*, p(z)d?z) and the estimate
[1Do (B o® 0 Ry) (V]2 = Dy (5 0®) (DoRu(v)) ||z < 48|z
holds for all v € L(D*, p(2)d*z) and pu € L>(D");.
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3.2. The L%-estimates. The lemmas below are needed for the rigorous
definition of a complex Hilbert manifold structure on 7'(1).

Lemma 3.5. For every ¢ > 0 there exists 0 < § < 1 such that for all
p € QB DY) with ||u]|e <6,
|(w,)- (2) |2 1 e

Il P~ - 2P2] = (- [2P)?

Jor all z € DUD". The same inequality holds for w,— = w;l.

Proof. Using the isomorphism Q~11(D*) & Q~11(D), given by the reflec-
tion (EM) and the property (B8, it is sufficient to prove the estimate for
z € D. Since v, = aow,, where o € PSU(1, 1), the estimate holds for w,
if and only if it holds for v,. By Lemma B v, fixes 0 and oo, and by the
result of Ahlfors and Bers in [AREL] (see also the remark of Bers in [Berid])
the functional

L2713 s (7,)-(0) € C

is real-analytic at . = 0. In particular, for every € > 0 there exists 0 < 6 < 1
such that for all g € Q=11 (D*); with ||ple < 6,

(3= ()" = 1) < e.

Let ft = poo, and y; = 6,07,00,, where 0, (w) = ff'_;fu and &, € PSU(1,1).
Since i € Q7 11(D")y, it follows from LemmaZ that also v;(0) = 0. There-

fore &.(v,(z)) = 0, and one obtains

()= (2)
(1 =7 (2)])?
Since ||fi]|oo = ||ft]|oo, the assertion follows. Since for g € Q= MY(D*)y, p=t €

L£°(D*)y and || [oo = ||pt]|oo, the assertion also holds for w,-1. O

(1= 1=%)? = [(v2): ()]

Corollary 3.6. Let p € Q7 1HD*), ||p|loo < 8, where § corresponds to = = 1
in the previous lemma. Then for every A € L°°(D*); the linear mapping
DR, extends to an invertible bounded linear operator on the Hilbert space
L3(D*, p(2)d?z). Moreover,
V2

DR (v < s e,

H ol T (=)
Jor allv € L*(D*, p(2)d*z) and A € L*°(D*)1, and the same inequality holds
Jfor D\R,—1.

Proof. Since
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1—[uf? 1
o\~ (= lulle)?
(HWO%EwZ;i) ) (1= llulloo)

for all A € L>°(D");, we have by using Lemma B and ||tt||co = || || cos

/! ‘DAR*L(”)\ZWWZ <Ol [
D* /.

—(1 ~ lalloo)™ / ol |') (1= )2

<2(1 - HuHoo)_4/ WPp(2)d*z = 2(1 = |luloc) I ll5-
]D)*

2
Vo wugw#‘ p(z)d*z
w

1

Replacing everywhere p by p=* we get the same estimate for D\R,—. 0O

Denote by O(D*); the subgroup of L°°(D*); generated by u € Q=11(D*), ||yl <
8, where § is as in Corollary B

Lemma 3.7. For every p € O(D*); there exists C' > 0 such that
1B (A) = Ru(Qo)llz < Cl[Ar = Aol
Jor all Ay, Ay € L*(D%)y satisfying Ay — Ay € L2(D*, p(2)d*z).

Proof. Suppose first that ||p]|c < 8. Set A(t) = Ay +tv, where v = Ay — Ay,
so that A(t) € L*>°(D*);, 0 <¢ < 1. By the fundamental theorem of calculus,

R0 = Rua) = [ GRG0

1
:/ D/\(t)R
0

| Do)
</ g Dy Ru(0) () p(2) 22 | dt

<CHwll; = C*IAr = dalf5.

Using Corollary B3

[Ru(M) = Bu(Mo)ll5 =

The same estimate also holds for R;l.
Since every p € O(D*); can be written as pZm + --- % puj', where p; €
QLY DY), ||pilleo < 8, and &, =41, i =1,...,n, we have

— R°1 Ce En
R“ - Rﬂfl © © RMn’
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and the assertion of the lemma follows. O

Remark 3.8. Applying the same argument, we get from Corollary B that
for every p € O(D*); there exists C' > 0, depending only on ||p||s such that

|DaRuw)||, < Cllvilz

for all v € L*(D*, p(z)d?z) and A € L (D");.

Lemma 3.9. For every p € O(D*); there exists C' > 0 such that
[(Bo®@)(Axp) = (Bo®@)(p)ll2 < ClIA2

Jor all X € L*(D*, p(z)d*z) N L>=(D");.

Proof. Set ¢(t) = (B o ®)(tA x ). By the fundamental theorem of calculus,

Bo@)(hen) - (Fod)u) = [ Ftjar

0
where

d
Pt) = Dir (500 B,) () = (Direu(508) 0 Dy (V)
by the chain rule. Since (DoR,)™' = D,R,-1, it follows from Remarks EZ
and B3 that
[Doeu(B o @) ()l2 < 48[[Doxwu Bersy=1 (¥) |2 < Crllwl2-
Using Remark B3 again, we get
de¢
—(t
o

Therefore,

o @en - o= [/
D

= || (Dixeu(B o @) 0 Dix ) (A)|l2 < Cof|All2, 0 < <1

2
1 d¢
/0 %(LZ)dt

g/ol //\%(t,z)fp—l(z)d?z dt
D

(&1 PY e
which concludes the proof. O

3.3. The Hilbert manifold structure of 7'(1). For every u € O(D*); let
V., C U, C T(1) be the image under the map k' = ®oR,0A of the open ball
of radius /7 /3 about the origin in Ay (D), which by Lemma Blis contained
in the ball of radius 2 in A, (D). Here (Uy,h,) is the coordinate chart U,
of the complex-analytic atlas for 7'(1) as a complex Banach manifold (see

Section EE=). Let

2
p~H(2)d*z

h, = huly, = Vi = A2(D).

The main result of this subsection is the following.
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Theorem 3.10. For every p,v € O(D*)y the sets h,(V,NV,) and h,(V, N
V,) are open in Ay(D) and the map

Py = by ohyt o h, (VN V,) — h,(V,NV,) C Ay(D)
is a biholomorphic function in the Hilbert space Ay (D).

Proof. First we prove that the sets h,(V,,NV,) and h,(V,,NV,) are open in
Ay(D). Since V, NV, # 0 (otherwise there is nothing to prove), there exist
¢1 € hu(V, O V) and ¢y € 7y (VO VL), |12, [[@2]l2 < /7/3, such that
h;l(gbl) = h;l(gbz), i.e.,
(@0 Ryo A)(61) = (B R, o A)(6)
Setting A = A(d1), Ao = A(¢2) and kK = v+ =1, we get
@()\1) = q)()\z * I{).

The sets h, (U, NU,) and h, (U, NU,) are open in A (D), so that there
exists &y > 0 such that h, (U, NU,) contains a ball of radius é; about ¢;
in Ao, (D). The mapping hy, : h, (U, NU,) = h,(U,NU,) C Ax(D) is a
continuous function in the Banach space A., (D), so that there exists d; > 0
such that the inverse image by h,,, of the ball of radius é; about ¢; in A (D)
contains the ball of radius §; about ¢ in A, (D). According to Lemma B2,

the latter ball contains any ball of radius §3 < /7 /1202 about ¢, in Az(D).
Now for every @3 € Ay(D) satisfying ||p2 — ¢2|[2 < 05 set

P1= hu(p2) = (Bo® o ReoA)(p2).
We claim that d3 > 0 can be chosen such that o1 € A3(D) and |12 <
\/m, which implies that iLU(VM N V,) contains the ball of radius d3 about
¢2 in Az(D). Indeed, set A = A(ps2), so that ¢; = (50 ®)(X* k). Since
A — Ay € LE(D*, p(2)d?z), we have by Lemmas EMand E,

lor — ullz = (B o @) (A x k) — (Bo®@)(Ag k)|l
<A A 2 < CPIN = Mgl
= 2C%|[p2 — 2|2 < 2C763,

where the constant C' > 0 (chosen to be the same for both Lemmas EZ
and BH) depends only on Az and k. Choosing d3 small enough we have
leall2 < /7 /3. o i

The same argument applied to the map h,, = h;yl proves that h,(V,NV,)
is open in A (D).

It remains to prove that the map IN”LW is a holomorphic function in the
Hilbert space Az(D). It is bounded, so according to [Rautd] it is sufficient
to prove that for every A € iLl,(VM NV,) and every n € A3(D) the mapping
C 3t ¢t) = hu(N+tn) € Az(D) is a holomorphic function in some
neighborhood of 0 in C. For this purpose we use the standard argument
based on the fact that the map h,, is already a holomorphic function in
the Banach space A, (D) and the mapping C 3 ¢t — ¢(t) € A (D) is a
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holomorphic function in some neighborhood of 0 in C. Thus there exists
0 > 0 such that for every |tg| < 6,

Jot6) = o100 ~ (¢ - ) 00

=o(|t —tg|]) as t—to.

o0

Moreover, § can be chosen such that A+t € h,(V,NV,) for |t| < §. Then for
every z € D the complex-valued function ¢(¢)(z) is holomorphic on [t| <
and

8(1,2) = 610, 7) — (= 10) 10,

:L, qﬁ(w,z)( L t_t02>dw
270 Jjw—to] =6 w—t w-—ty (w-—to)

_ (t—t0)2 (b(wvz) w
2w fiw_m:gl (w —to)?(w — 1) o

where §; > 0 is such that the disk of radius §; about ¢g is inside the disk of
radius § about the origin, and ¢ satisfies |t—to| < &;. Since ¢(t) € h,(V,NV,),
|6()||3 < #/3 for all |t] < &, and we have

o(t) — o(to) do
H t—to _E(to)

|t—t0|2% |dw| % 2
< P(w + to)||;|dw]
Ar? Jipj=s, [wl*w = (¢ = 0)* Sjw)=s, | £

=0(|t — to]*) as t —to.

According to [Bauid], Theorem B justifies the following definition.

Definition 3.11. The covering

= J v

Leo(D*),
with the coordinate maps h,, : V,, — Ay(D) and the transition maps
By =hyoht i h,(V,OV,) — h,(V,NV,)

is a complex-analytic atlas which endows T'(1) with the structure of a com-
plex Hilbert manifold modeled on the Hilbert space Az (D).

Corollary 3.12. The right translations are biholomorphic mappings on the
Hilbert manifold T'(1).

Proof. Representing every point in T'(1) by p € O(D"); we have Rp,;(V)) =
Visu, so that iL/\*MOR[M]OiLKI is the identity mapping on ib/\(v/\) C A;(D). O
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We will continue to use the name Bers coordinates for the complex co-

ordinates (V,, h,) on the Hilbert manifold T'(1). As in Section EZ=d, the
vector field % corresponding to v € H ™11 (D*) at a point [u] € Vj in terms
of the Bers coordinates on V), has the same form (B3, i.e.,

= () o).

Jde,
where P : L*(D, p(z)d*z) — H~4Y(D*) is the orthogonal projector given

by ().

3.4. Integral manifolds of the distribution ®7. Finally, we introduce a
Hilbert manifold structure on the Banach space A, (D) by defining the coor-
dinate chart at every ¢ € A (D) to be ¢ +A5(D). By LemmaElthe Hilbert
manifold topology on A, (D) is stronger than the Banach space topology.
The Hilbert manifold A« (D) is not connected. Rather A (D) is the union
of uncountably many components ¢ + A3 (D) with ¢ € A (D)/Az (D), which
are integral manifolds of the distribution © 4.

Theorem 3.13. The Bers embedding 5 : T(1) — B(T(1)) C Aw(D) is a
biholomorphic mapping of Hilbert manifolds.

Proof. To prove that the Bers embedding is holomorphic it is sufficient to
show that for every p € O(D*); that image of the ball of radius y/7/3 about
0in A3(D) by the mapping 5o ﬁ;l =fBo®oR, oA is inside a translate by
(B o ®@)(p) of some ball about 0 in Ay(D). This immediately follows from
Lemma ES

[(50) () = Bo®) ()] =1 (3o@) (s ) — (50@) ()]
< CJAlL,

where A = A(¢) € O(D*); and the constant C' > 0 depends only on |||[oo-
Since the Bers embedding is holomorphic mapping of Banach manifolds, the
standard argument used in the proof of Theorem B works for this case,
so that the mapping S o ﬁ;l — (B o®)(u) is a holomorphic function in the
Hilbert space A3 (D).

Finally, the image B(7T'(1)) is open in the Hilbert manifold A., (D) since
it is open in a weaker Banach manifold topology. Using Theorem B and
the inverse function theorem for Hilbert manifolds [E30395] we see that the
Bers embedding is biholomorphic. O

Theorem EZE allows to conclude that the distribution ®7 on T'(1) is
equivalent to the restriction of the distribution 4 on S(T(1)) C A (D)
and, therefore, is integrable. Its integral manifolds are inverse images by
the Bers embedding 5 of the integral manifolds of the distribution © 4 on
B(T(1)),1i.e., of the components (¢ + A3(D))NB(T(1)). For every [u] € T(1)
denote by T},;(1) the component of the Hilbert manifold 7'(1) containing [x].
It follows from Theorems Eedand B that the Hilbert manifold T[M](l) is the
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integral manifold of the distribution ©7 passing through [u] € T'(1). The
right translations act transitively on the set of components, R},;(1},)(1)) =

Tisaq(1) for all [u], [v] € T(1).

4. VELLING-KIRILLOV AND WEIL-PETERSSON METRICS

4.1. Velling-Kirillov metric on the universal Teichmaiiller curve. The
Velling-Kirillov metric is a right-invariant Hermitian metric on 7 (1), defined
at the origin of 7 (1) by

o0

(4.1) V55 = D nleal®,

n=1

where

_- o d
v = w and u= E Cnelne_ € TéKSl\HomquS(Sl)‘
2
neZ\{0}

The convergence of the series is guaranteed by the property TS4 (with s =
1/2) in Section BEZ2) The Velling-Kirillov metric is a smooth right-invariant
Kéhler metric on the complex Banach manifold 7(1). Its symplectic form
wyx at the origin of 7(1) is given by

_ )
wVK(Vv V) = 5 HVH%/Kv

In the next section we prove that the Velling-Kirillov metric is real-analytic
on 7(1) by presenting its real-analytic Kahler potential.

Remark 4.1. For the homogeneous space S\ Diff ;. (S!) the metric was in-
troduced in this form by A.A. Kirillov [EGEXA and it has been studied by
A.A. Kirillov and D. Yuriev. In particular, in X4 it was shown to be
Kéhler . In [Akl], J. Velling has introduced a Hermitian metric for the space
7 (1) using arguments from the geometric theory of functions. In [[Eeaid],
Kirillov’s definition was extended to 7 (1) and it was shown that the result-
ing metric coincides with the metric introduced by Velling. The Velling-
Kirillov metric is the unique right-invariant Kahler metric on the universal
Teichmiiller curve 7 (1) [REEX, ICEGTA].

4.2. Weil-Petersson metric on the universal Teichmiller space. In
this section we consider 7'(1) as a Hilbert manifold. The Weil-Petersson met-
ric on T'(1) is a Hermitian metric defined by the Hilbert space inner product
on tangent spaces, which are identified with the Hilbert space H~11(D*)
by right translations (see Section B&). Thus the Weil-Petersson metric is a
right-invariant metric on 7'(1) defined at the origin of T'(1) by

(4.2) (,v)ywp = // uop(2)d*z, p,v € H™HH DY) = ToT(1).
o
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To every u € H~11(D") there corresponds a vector field % over V, given

by (Z3)-(E&H). We set for every x € Vp,
13 gt = (| 2] / | PR 0 PR Ip(e)

This formula explicitly defines the Well—Petersson metric on the coordinate
chart Vy. The Weil-Petersson metric extends to other charts V,, by right
translations.

The following statement is an easy consequence of Lemma B

Lemma 4.2. The Weil-Petersson metric is continuous on T'(1).

Proof. As it follows from Corollary BEZE it is sufficient to prove that for
every u € H=11(D*) the function g,z is continuous on Vj at 0. Since the
embedding Vo < Uy is continuous by LemmaB&l, it is sufficient to prove that
the function g, is defined on the neighborhood of 0 in Uy and is continuous
at 0.

Since the projector P is norm-decreasing,

/ | PR 0 PTG Ao )
/ [

_ 4// Ao
1—|s]? 1—|wﬁ|) '
According to Lemma B for every € > 0 there exists 0 < § < 1 such that
for all k € Uy satisfying |||/ < & we have

) ~ <4//1'_“:Z|2

|M|2 1 2
—11d
T AR \ T :
a€—|—52
/ |ul?pd?z.

9pn5) = gww)\ < 2. 0

Remark 4.3. Using the basic properties of the q.c. mappings, it can be shown
that the Weil-Petersson metric is real-analytic on 7'(1). In fact, it is sufficient
to prove that for every p,v € H™"!(D*) the mapping Vo 3 £ — g, (k) € C
is real-analytic on Vp. Since this result will not be used later, we omit
the proof. Explicit curvature computations in Section 7 will show that the
Weil-Petersson metric on 7'(1) is twice differentiable.

Rp(z)d

wr)-|? 1
L—Jw?)? (1 -7

Thus, for § small enough
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We will prove in Section 7 that the Weil-Petersson metric is Kahler . Its
symplectic form wy p is a right-invariant (1, 1) form on the Hilbert manifold

T(1). At the origin of T'(1),
wwp(i,v) = §uvywe, v € H V(D).

Remark 4.4. The Weil-Petersson metric on the distribution ®7 (without
defining the Hilbert manifold structure) was introduced by S. Nag and A.
Verjovsky [NAZUL] as a direct generalization of the Weil-Petersson metric on
the finite-dimensional Teichmiiller spaces. It was proved in [NASL] that the
embedding M6b(S1)\ Diff . (S!) < T(1) is holomorphic and the pull-back of
the Weil-Petersson metric on the distribution 27 coincides, up to a constant,
with the right invariant Kéhler metric introduced by Kirillov [RizXd by the
orbit method. At the tangent space of the origin the latter metric is defined

by (cf. (E3))

IvI* =) (n° = e,
n=2
where
u—ifu ing @ R\fah( QL : 1
vE—p— and u= Z cne™ 0 € Ty Mob(SH)\ Diff 4 (S7).
n€Z\{0,£1}

It follows from the results in Section BE=llthat the closure of Mob(S1)\ Diff 4 (S1)
in the Hilbert manifold topology on T'(1) is the Hilbert submanifold T (1).

5. CHARACTERISTIC FORMS OF THE UNIVERSAL TEICHMULLER CURVE
Let V. =T,7 (1) be the vertical tangent bundle of the fibration
m:T(1) = T(1).

It is a holomorphic line bundle over the complex Banach manifold 7 (1), the
fiber over a point ([u],z) € T(1) is a holomorphic tangent bundle to the
quasi-disc w*(D*). The hyperbolic metric on w#*(D*) defines a Hermitian
metric on V', and we denote by ¢1 (V') the first Chern form of V' corresponding
to this metric.

The Hilbert manifold structure on 7'(1) naturally induces a Hilbert man-
ifold structure on 7 (1), such that the projection = : T(1) — T(1) is a
holomorphic mapping of Hilbert manifolds, and the vertical tangent bundle
is a holomorphic line bundle over the Hilbert manifold 7T'(1). We will con-
tinue to denote corresponding line bundle by V', and by ¢;(V) — the first
Chern form corresponding to the hyperbolic metric on the fibers, specifying
explicitly which topology we are using. Since the Hilbert manifold topology
is stronger than the Banach manifold topology, the form ¢ (V') for the Ba-
nach manifold structure on 7 (1) naturally restricts onto 7 (1) considered as
the Hilbert manifold.
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Similar to Wolpert’s work [MAalRd] on finite dimensional Teichmiiller spaces,
we define the analogs of Mumford-Morita-Miller characteristic forms as the
following (n,n)-forms on the Hilbert manifold 7'(1),

(5.1) fn = (=) (ea(V)"F),

where 7, : Q*(T (1)) — Q*7%(T(1)) is the operation of “integration over the
fibers” of the fibration = : 7(1) — T'(1). As we will see in Section B=X it
is the passage from the Banach manifold structure to the Hilbert manifold

structure that makes the operation m, well-defined (i.e., the integrals over
non-compact fibers become convergent).

5.1. The form ¢ (V) as Velling-Kirillov symplectic form. In this sec-
tion we work with the Banach manifold structure on 7(1). Let z be the
complex coordinate on C\ {0}. The assignment 7(1) 3 ([u], 2) — —220,
defines a holomorphic section of the line bundle V over 7(1) ®. The hyper-
bolic metric on w*(D*) is a pull-back of the hyperbolic metric on D* by the
conformal map g, so that

4|22 (g (2) 2

(lgat(2)]2 = 1)
The first Chern form of the line bundle V is

2
1=°0: 1 .y =

2 l =
Cl(V) = 56 = ﬁﬁalog “2’282“27

where 0 and 0 are, respectively, the (1,0) and (0, 1) components of the de
Rham differential on 7(1).
Let

K =log HZQ@ZH([M],Z) — log2.

Lemma 5.1. The function K : T(1) = R is real-analytic. Under the corre-
spondence T (1) 3 ([u], 2) — v € ST\ Homeoy,(S*), where y = (g7 o f)] .

K(7) = log lg/(cc)].

Proof. Using formulas g = A, 0g,00," and w = g;l(z) from Section =z,
it is straightforward to compute

T e =D =)
Now it easily follows from the general properties of q.c. mappings that for

z € D* the functional 7'(1) 5 [u] — g;'(z) € C is real-analytic so that
|g'(o0)| is real-analytic function on 7 (1). O

Remark 5.2. The quantity |¢'(co)| is the capacity of the quasi-circle g(S)
corresponding to 7 € Homeog, (S*).

SUnder the conformal map z — % the vector field —2°9, — 9,.
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Theorem 5.3. The first Chern form of the vertical tangent bundle to the
universal Teichmiiller curve T (1) is proportional to the symplectic form of
the Velling-Kirillov metric,

a(V)=-2wyk.

Equivalently, the function K is a Kdhler potential for the Velling-Kirillov
metric on T (1).

Proof. 1t is based on the following lemmas.
Lemma 5.4. The (1,1)-form ¢, (V) on T (1) is right-invariant.

Proof. We need to proof that for every 79 € S'\Homeo(S') = 7(1) the
difference R K — K, where R, : T(1) — T (1) is a right translation and
(R%, K)(v) = K(v070), is a harmonic function on 7(1).

_ For every v = g lofeT)let ¥ =yoy =g tof. Since §j =
foyito flog, we have
(B3, K — K) (7) = log|§'(c0)| — log lg'(c0)| = log [(f o 75" o f7") (00)].

In [Berid], Bers has proved that the function
(120 (Forgto S7) (2) = hiy, 2)

~ !
depends holomorphically on v and z, which implies that (f oy to f‘l) (00)
depends holomorphically on + and our assertion follows.

Lemma 5.5. Lety =g tof € T(1), where fip(z) =3 rrganz"Tt, ag =1,
and g|p+ (2) = ZZOZO b,z'"". Then

(5.2) [Bol® =Y (n+ Dlaal* + ) (n = 1)[bal*.

Proof. Evaluate the Euclidean area of the domain Q = f(D) = ¢(D) in two
different ways. First,

)= 1 d? _1 Pd*z = Da,|?,
lim_ // z im //|f| z ﬂ'Zn—l— )| an|

where D, ={z € C: |z| < r}. On the other hand, the classical area theorem

gives
Q) =7 (1-mn)bal’,
n=0
and we obtain (B=N). O

Now we complete the proof of the theorem. Let

d
_ nd R
u= E cne™ o e TyT(1),
neZ\{0}
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and let v, = g7 o f!, 40 = id, be corresponding smooth curve in 7(1).
Using notations from the previous lemma, differentiate the relation (B=3)
with respect to ¢ and set ¢ = 0. Denoting

da,, . . db
W(O) and  b,(u) =b, o —2(0)

and using bo(0) = 1, a,(0) = b,,(0) = 0 for n > 1, we get

an(u) = a, =

(5.3) bo + bo = 0.

Differentiating (B twice with respect to ¢ and setting t = 0 we get

2 o] o]
=2 (n+ Dal* +2) (n— 1)|ba|”
n=1 n=1

o]
=4 nla|*,
n=1

d*by d?bg

dbg
dt? (0)+ dt? (

0) + 2 %(0)

where we have also used the property TS1 in Section BEZ. Since gj(oc0) =
bo(t), using (B=A) we get

& Sy
dt2 log |gt )Ht:O = 22n|an|2

Let v = f(u — iJ u) be the holomorphic tangent vector to 7(1). Since
an(J u) = iay,(u), using (B we finally get

o0

(5.4)  (QOK)(v %Zn (Jan (W) + an(J W)?) = nlin(w)]*.

n=1

This proves that © = 4iwy g at the origin of 7(1). Since both these (1,1)-
forms on 7 (1) are right-invariant, the assertion follows. O

Remark 5.6. In [RXX4], A.A. Kirillov and D. Yuriev have stated that the
function K, restricted to the space S\ Diff { (S1), is a Kihler potential
of the Velling-Kirillov metric. Theorem E& extends this result to 7(1) ~
ST\Homeog, (S!) and gives its geometric interpretation.

5.2. The Chern form ¢; (V') and the resolvent kernel. Let u € Q™! (D¥)
be a horizontal holomorphic tangent vector to 7 (1) at the origin. According
to the property TV1 in Section E=Z the vector field 7, — the horizontal
lift of the vector field % on Uy C T(1) to the point (0,z) € #=1(0), is

identified with (oZ71)*p € Q=11 (D).
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Proposition 5.7. (i) On the fiber 7=4(0) C T(1) the Velling-Kirillov
metric is given by

1
(0:,0:)y 5 (0,2) = mv
<8277_M>VI' (07
(T Ty (0,2 / G (2, w) () Pp(u) 2

(i) On the fiber #=4(0) C T (1) the (1,1)-form © is given by
2
@ (827 85) (07 Z) = —m7
©(0.,73) (0,2) =0

0 (7 7) (0.2) = = [ [ Gl (o

(iii) The vertical holomorphic tangent bundle V. — T (1) of the fibration
7 T(1) = T(1) is a negative line bundle.

Proof. Tt follows from the property TV2 in Section E=Z that the vector
field 0. at (0,2) € #71(0) corresponds to the tangent vector

u= Z cne 0@ € Ty S \Homeo,, (S")
neZ\{0}

with ¢; = (1_2)1(;12;'2'2) and ¢, = 0 for n > 2. This proves the first formula
in part (i). The second formula follows from the fact that, according to the
property TS1 in Section =Zal the tangent vector u € TS \Homeo,(S'),
which corresponds to the horizontal lift 7, of the vector field % to (0,z2) €

771(0), has ¢; = 0. The last formula follows from the following lemma.

Lemma 5.8. Let p € Q7 V1(D¥) and

6(:) = DoB((z) = (1 = m)ans""? € A..(D).
Then "~
/ G (2, u) () 2o (u u_22n|an|2
where
0 = S - e

is the power series expansion of (o7 1)*(¢) = po o ! ((Uz_l)’)2 € A (D).
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Proof. Since G(z,u) is a point-pair invariant, it is sufficient to prove the
formula only for 2 = co. In this case, using the relation G'(co,u) = G(0,1/4)
between the resolvent kernels on D* and D and the formula p = A(¢) we get

/Gooum )2 (u u—/ G(0,u) (1= Ju?) 2l (w) 2.

It follows from the explicit formula (EZ3) that

11472 1 1
_ 2\2 _ R e -~ AV _
(1= PG00 = h(r) = (o tog o = ) (1= 12, r =l

r2

Since h is an integrable function on [0, 1), we have
> 1
/ G(0,u)(1 = [ul*)?](w)Pd*u = 27 Y (n* = n)*]a, | / h(r)r* rdr.
0
D n=2

A straightforward computation gives

[ reetrar =L
0 nr rr_ﬂ(n:)’—n)(n?—l)’

which proves the lemma. O

Using this Lemma, the property TV1 in Section E=Z and the property
TS2 in Section 22, we get the third formula in part (i). Now part (ii) fol-
lows from Theorem B&l, and part (iii) follows from part (ii) and the property
RK2 in Section E4 O

Remark 5.9. Parts (ii) and (iii) of Proposition BE=lgeneralize Wolpert’s com-
putation of the (1, 1)-form © for finite-dimensional Teichmiiller spaces (see
Theorem 5.5 and formula (5.3) in [RVQIRH]).

5.3. Mumford-Morita-Miller characteristic forms. In this section we
consider 7 : 7(1) — T'(1) as holomorphic fibration of the Hilbert manifolds
and evaluate the Mumford-Morita-Miller forms x,, on T'(1).

Theorem 5.10. The characteristic forms k, are right-invariant on the
Hilbert manifold T(1) and for py, ..., V1, .., vy € H-HHD*) ~ ToT (1)

Hn(:uh" s Hn, V1 ee

_(ézftjl sgn(o //G G (,unﬁg(n)) p(2)d*z,

where the sum goes over the permutation group S, on n elements and sgn(o)
is the sign of the permutation o.



42 LEON A. TAKHTAJAN AND LEE-PENG TEO

Proof. 1t is straightforward computation of the integral

B ([1y ooy Py D1y v oy )

n+1
(2 ) / O™ (0., 02, Ty s Togy + e vy Ty T ) d2 AN dZ
T

using Part (ii) of Proposition B2l We need only to verify that the integral
is convergent. This follows from the properties of the resolvent kernel in
Section B2 Indeed, the property RK3 assures that G/(ur) is bounded on
D* for u,v € Q LD, and properties RK2 and RK4 imply that for
pov € H=VH(DM),

[ cwpares| < [[ [ [ 6euwptlpwedu
D* D+ D*

=[] [[ citvlp@pwazi
D+ D*

= [ twrtlptde < .
D*

O
Corollary 5.11. On the Hilbert manifold T(1)
R1 = 7r1—2wWP.
Proof. We have, using again the property RK4 in Section E3
_ J2
V) =53 / G(uv)p(2)d*z = ﬁ // z
_ﬂ__wWP (:uv )
O

Remark 5.12. Combining Corollary Bl Part (ii) of the Proposition E=land
Theorem B3 we get another proof of Theorem 4.3 in [Lealld].

Remark 5.13. Theorem B generalizes Wolpert’s result for finite-dimensional
Teichmiiller spaces (see Lemma 5.9 and Lemma 5.10 in [MWalXd]) to the uni-
versal Teichmiiller space.

6. FIRST AND SECOND VARIATIONS OF THE HYPERBOLIC METRIC

Here we present a concise formula for the second variation of the hy-
perbolic metric in terms of the resolvent kernel. We are using the model
H* ~ U, so that the density of the hyperbolic metric p(z) = isa(1,1)
— tensor on U.
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6.1. The first variation. It is a classical result of Ahlfors [ALI&N] that the
first variation of the hyperbolic metric at the origin of 7'(1) is identically
zero.

Lemma 6.1. For every u € Q= 44(U),
L,p=0.
Proof. Since
4|(wep) - (2)|°

(we(2) = weu(2))?

psu = w:u(p) = -

we have
= 4]0 =TT T

where F' = Fu], ® = ®[u], and the result follows from Lemma B, O

Remark 6.2. For the case p € Q11 (U,T), where T is a cofinite Fuchsian
group, another proof of the Ahlfors result was given by Wolpert [BAQIXE].

6.2. The second variation. Set
92
L,Lip= eH
WAL = 520z om0 ”

We have

Proposition 6.3. For every u € Q~41(U),
LuLzp = pG(|ul?).

Proof. Using the representation

(6.1) pH(z) = —4K. (2, Z)

and the first formula in (B2Z8) we get

(6.2) // W) Kep (2, u) Kep(u, 2)d*u,

where the integral is understood in the principal value sense. Setting € =0

in (B=3 and using Lemma B2l we obtain

pu) 2, =0 for all =
(6.3) 4/(u_z)2(u_z)2du_0f Il zeu.

Using formulas (BEZ)) and (E2Z), we get from (B=J) the following integral

representation for the second variation of the hyperbolic metric

LyLpp(z ——//// ( —v)Z(f:/r—lv)Q(u—Z)2

1 2 2
L RS T T v)2> Fudv.

(6.4)
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The differentiation under the integral sign is justified by the same argument
as in JAhIGZ]. We transform the principal value integrals in (B=8) into the
ordinary integrals by using the identity

I z—Z (v—2)(z—wu)
(6:5) Pl sy pe B DYy o e L
which gives
1
(u—2)*(u = 0)*(z = v)?
B 1 2(z — %)
C(w= 2P -0 (u—0)? 0 (u= 2z - 0)(u )
(z — 2)* 2(z — 2)°

(u—2)2(u—2)2(z—0)%(z — v)? + (u—2)(u—2)3(z—0)3(z—0)

Using (B=3) and Corollary EEX we see that last two terms in this formula do
not contribute into the representation (B=l) and we obtain

LyLpp(z ——“—[/// ( —vV@ijW—ZV

(Z —z) 2, 12
dud*v.
(w—2pP-o)z-02) """
Now we apply the operator 2(Ag 4+ %) to the bounded function p~™'L,Lzp
on U. Using (B it is straightforward to compute that

(z —2)? (z—2)°
@20+ (o= ===
(- )"
(u—2)4z—0)¥

_I_

9
2
which, together with (B=Z0), gives

2A0‘|’ 1) ( 'L LMP) ( )

) //// O e = )

Using the property RK3 in Section B2 completes the proof. O

Corollary 6.4. For every u,v € Q= 11(D*),

D=2 [ [[ @
U U

(2_5)3 2 12
<u—a%u—m@—v>)d“d

((u - v)zgz - i;z(u - 2)?




CURVATURE PROPERTIES OF THE WEIL-PETERSSON METRIC ON T(1) 45

Remark 6.5. It follows from Proposition B by polarization that

82
881882 e1=e5=0

LyLyp = poTERY = pGi(pp).

Remark 6.6. For the case p € Q~bY(U,T), where I' is a cofinite Fuch-
sian group, the formula for the second variation of the hyperbolic metric
in Proposition B= was first proved by Wolpert [BAQIXH]. However, method
in [BAQIXE] does not work for the universal Teichmiiller space 7'(1). The
proof of Proposition B shows that the Ahlfors’ original singular integral
representation (B=3) can be easily transformed to the closed form using the
resolvent kernel.

7. RIEMANN CURVATURE TENSOR

In this section we consider 7'(1) as a Hilbert manifold equipped with the
Weil-Petersson metric. We prove that the Weil-Petersson metric is Kahler ,
compute its Riemann and Ricci tensors, and show that the Ricci, holomor-
phic, and sectional curvatures are all negative. Since the Weil-Petersson
metric is right-invariant, it is sufficient to compute these tensors at the ori-

gin of T'(1).

7.1. The first variation of the Weil-Petersson metric. For u,v €
Q~L1(D*) set

w,)z
Q. v) = P(R{j, ) o w,
(1) = PG 010, (2
Proposition 7.1. For p,v € Q YD),
J
gQ(Mﬂfl/) =0 - 07
J a _, 0
peQUn )| = 250" 7

Proof. We will be using canonical complex anti-linear isomorphism Q=11 (D*) ~

Q~11(D), given by the reflection (Z¥), and the model H?> ~ U of the hyper-
bolic plane. From () we get

(7.1) P (2) Q(p,ev) (2 // w) K., (u, 2)*d*u.

It follows from equations (E=Z) that
(7.2)

T I ) Puiy
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and

(7.3)

% L, Qmen)(=) = 6(1;22)24/ 4/ (@ z)?lziu V?E;;(U —pdude.

The integrals are understood in the principal value sense and differentiation
under the integral sign in (B is justified as in [ALILZ].
To prove that the integral (=) is zero, we use the identity

(u—v)(uiz)(v—z) - (u—lv)2 (viz_uiz>7

and rewrite the integral (=8 as follows

(74) I ] e
= /[Uf <u—v v—aQ‘w—vﬁw—a

UXT\{Ju—v|<e}
2 1 2. 12
e e R ek e LGOI
=L+ 1+ I3+ 14

Applying Lemma (EEEB) to the principal value integrals over u in terms
Iy, Iy and Iy, we conclude that these terms vanish. Changing the order of
integrations in /3 (which is legitimate since domain of integration is invariant
under the involution (u,v) — (v,u)) and applying Lemma (EZE) to the
integral over v we conclude that the term I3 also vanishes. This proves that
the holomorphic variation of Q(u, ) vanishes.

To prove the formula for the antiholomorphic variation, we again use the

identity (B=3), which gives

1 _ (u— 2)?
R B s o il R L GRS E (R e
(z —2)? 2(z — 2)%(z — u)

(u=2)Hv=2)2(v -2 (u=2)°(z-0)0(~2)
2(z — 2)(2 — u)?
(u=2)%(z = 0)*(u—0)’
Using formula (B&) and Corollary B2 we see that the second and third
terms do not contribute into (ﬂ) and we get

Qo) = ////

07| _
(o e )

(u—2)4v—2)2(u—0v)?  (u—2)°(z—0)3(u—"0)

(7.5)
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Now applying d:p~ 10 to the integral representation in Corollary B0 (the
differentiation under the integral sign being trivially justified) we get the

formula for the antiholomorphic variation. O
Set
QW = | Que)
lu - 85 —o lu7 .

Proposition 7.2. Let y € H=VY(D*) and v € Q~VY(D*). Then Q(p)[v] €
L*(D*, p(2)d*z) and

) 2
|Quw| = Il - (ur, Gi(ur),
where (, ) stands for the inner product in the Hilbert space L*(D*, p(2)d?z).

Proof. As in the proof of Proposition &0, it is convenient to use the iso-
morphism Q~1(D*) ~ Q~HHD). For p € BC™(D) N L*(D, p(z)d?z) with
compact support and v € BC*(D) we set

Q, (1) = 2™ 5L G,

We will prove that |Q, (u)||5 = ||u?||3 - (uv7, G(uv)), so that Q, extends to a
bounded linear operator on L%*(D, p(z)d?z). Since, according to Proposition
E1 O, (1) = —Q(u)[v] for p € H-VH(D*) and v € Q~L1(D*), the assertion
follows from this fact.

From the explicit formula (EZZ) we get the following estimates

(7.6)  Glzw)=0((1=|2[%), (9:p710:)G(z,w) = O((1 ~ |2]%)),
9.G(z,0) =0(1), (0:(0.p710.)) G(z,w) =O(1) as |z| =1,

uniformly on w on compact subsets of D. Using the Stokes’ theorem and
the identity

pl0.p710.p0zp7 02 = No(Ao+ 3)

we get

/|Qy I p(2) z—4// (071G () (07 Gx(u)) . pl2) %=
_ 4/ Ao(Ao + DG ()G (aw)p (=) d=

=2 [ [ oGl (el

where in the last line we have used property RK3 from Section EE3. Due
to the estimates (B2 the boundary terms arising in the Stokes’ formula
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vanish. Using the Stokes’ theorem once again we finally get

/ 10, (1) p(2) z_Q//;wAOG;w 2)d2z
-/ / o p(e)s — [ [ G p(e)
D D

= ||uv|3 = (u7, G (up)).
The boundary terms again vanish due to (E) and Remark 3.2. a
Corollary 7.3. For u,v € H=V1(D*) and k € Q~11(D¥),
(@], Q)[K]) = (s, vi) — (s, G (vR))
Theorem 7.4. For p,v € H~YY(D*) and x € Q711 (D),

= 0.
e=0

0
ggw (k)

Pmof Since P? = P, we get from (E=3),

Gun(r / [ QU0 @RIz ) () = [ [ QR o)),
J,

so that

= (QUala.v) + (1 QW)I]) = (1 Q)14

Differentiation under the integral sign is justified as in [ALIEZ]. Thus for all

v € H-HL(D*) and k € Q~11(D¥)
(Qulsl.v) =0,

and the theorem follows. O

0
%gui(gﬁ) e

Let {1, }°, be an orthonormal basis for the Hilbert space H~11(D~),

3 _
fn(2) = — "8 T 222, n=2.3,. .,
s

and let {e,}°2, be corresponding Bers coordinates on the chart V. Since
leellz = 2|[DoB()]|2, it follows from Sectlon ﬂthat > s len]® < 4. De-
note by ain

Vo, and set ¢ = i, - Since the basis {p, 102, is orthonormal, gmﬁ = bn
at the origin of 7'(1).

Corollary 7.5. The Weil-Petersson metric is a Kdhler metric on the Hilbert
manifold T (1), and the Bers coordinates are geodesic coordinates at the ori-

gin of T'(1).
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Proof. Tt follows from Theorem E=3 that

8gmﬁ _
) =0.

g

Remark 7.6. Propositions & and Edand Theorem EA generalize Wolpert’s
results for finite-dimensional Teichmiiller spaces (see Lemma 2.7 and The-
orem 2.9 in [MaIRH]) to the universal Teichmiiller space. In particular, our
proof of Theorem I (after Proposition = has been established) is the same
as in [\/\/nlka_

7.2. The second variation of the Weil-Petersson metric. Due to Corol-
lary 2, the Riemann tensor of the Weil-Petersson metric at the origin of
T(1) is given by

0 gt
Rypnn = — 0
kimn 8€magn( )7
where we are using conventions of Yano and Bochner [BZR53] in Hermitian
geometry.

Theorem 7.7. For p,v € H=V(D*) and k € Q~11(Dr),

%gw(%) = (uk, G(VR)) + (uv, G(|k|%)) .

e=0

Proof. Differentiating representation (E=8) for g,y (sx) with respect to € and
g we get
82

DedE Gur (€K)

e=0
82 — -1 82 £K
= (858562(#7%) 620#/) + (;wyp 529z "
0? J
= 7@(#,8/@) 71/) + <_ Q(va"{)
(8585 o 0

e=0 e=0
82
+ (“v gz @er)

=)

9
" 9g

M)

Q(v, 5/@))

P ; _
) + (uwp el ) — (o, |5[) .
e=0

The differentiation under the integral sign is justified as in [ALI&Z], provided
that all integrals above are absolutely convergent. This follows from Propo-
sition B, property RK3 in Section EE3 Proposition & and the following

e=0

Lemma 7.8. For p € H™VYD*) and v € Q~H1(Dr),

82
Quev)| € LD, pl2)d%).
Je0s —o
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We relegate the proof of the lemma to the Appendix. Now comparing the
two expressions for the second variation of g,; and using Corollary =l we

get
)= (5
e=0

Using Proposition B we finally obtain

82
(1 5zt Qi 2n) ) + ()

e=0

92
Jde0s

gur(ek) = (i, G(vR)) + (u7, G(|K[%)) .

e=0

Corollary 7.9. At the origin of T'(1),

Rkimﬁ = - (:ukﬂlv G(ﬂm,un)) - (ﬂl:umv G(ﬂk,un)) .

Proof. It follows from Theorem E=ll by polarization that

= — (kA G(iw)) — (A, G(kr)).
[l

Remark 7.10. For finite-dimensional Teichmiiller spaces this result was proved
by Wolpert [BaIRd]. Except Lemma [E3 our derivation is the same as in
[\/anxr]‘

7.3. Ricci and sectional curvatures. The Ricci tensor at the origin of
T(1) for the orthonormal basis {u,}°2, of H~11(D*) is defined by the fol-
lowing series

o0
Ry = Z Ryt
n=2

Theorem 7.11. The Ricci tensor at the origin of T(1) is well-defined and
is given by

13
Ry = ——6.
K 127 M
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Proof. Set p = pg,v =y, and R,y = R;;. We have

D:——Zn —n (/// Gz, w)p(2)z" *v(w)w" d*wd?z
/// Gz, w)z"" 22" 2#( v )((11__||Z||)) dzdeZ)
2 ] ot o
—5}[//’G@JMMwﬁ@ExaMwm%w%
s

=L+ 1.

For the second integral, we use property RK4 in Section IE@ and get

d*w =

o [[ wwiT@ e = - g,
D

For the first integral using projection formula (B=I) we have

_gg/g/g G(z,w)u(z)y(v)(l_(jw_) |Z'? T

Let

(2,0) //G 2,w) 1_wv) |Z|_)Zw)4d2w.

The kernel B(z,v) satisfies

(7.8) B(z,v) = B(UZ7 O'U))O'/(Z)zmz forall o€ PSU(1,1),

Ll 11y (= fe)?
_ d*w
B(0.v) //(%14M2%mw 7) (= ow)

and

@?—‘

Hence

51
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and
1 2,92
I =— ——d“zd*w
1—zv)
- —//<><><>d -3
3 pEVEIpZ)G 2= 37rg“y
]D)*
Therefore.

g

Since the Weil-Petersson metric on 7'(1) is right-invariant, it follows from
Theorem =&l that the Ricci tensor is well-defined everywhere on 7'(1). De-
note by Ricwp corresponding Ricci (1, 1)-form on 7'(1). In terms of Bers
coordinates {g,,}°>2 , on the coordinate chart V,, the Ricci form is given by

. e _

Corollary 7.12. The universal Teichmiiller space T'(1) is a Kdhler-Einstein
manifold with negative constant Ricci curvature,

13
Ri =—-—— .
WP =~ 5 WWP
Proof. Since (1,1)- forms wwp and Ric are right-invariant, the result im-
mediately follows from Theorem =& O

Remark 7.13. For the dense submanifold Mab(S1)\ Diffy (S1) of T'(1) the
statement of Theorem EZEl was established by different methods in [RXXA]
and [BEXZZ BEXZH]. The “magic ratio” % is omnipresent in the mathe-
matics related to the string theory.

Let 8? , at € T3T(1) be real tangent vectors. According to [F3ad], the

sectlonal curvature of the section spanned by these vectors is given by R/g,
where
(7.9) R=Ryupvi + Ropur — Ruopw — Rupug,

g :4guﬂguz7 - 2|gu17|2 - QRe(guD)z-

Similarly, the holomorphic sectional curvature of the section spanned by the
holomorphic tangent vector 8%7 where g,; = 1, is given by R, ;..

As in the finite-dimensional case [F¥GIRH], we have

Theorem 7.14. Sectional and holomorphic sectional curvatures of T'(1) are
negative.
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Proof. For a section spanned by %, the holomorphic sectional curvature is
n

obviously negative: u # 0 so that G(|p|?) > 0, and (Ju|?, G(|p]?)) > 0.

For a section spanned by the real tangent vectors % and -,
n v

Cauchy-Schwarz inequality, it is easy to see that g is positive. Using Corol-
lary =3 we get

R = (u, G (v) + (v, G(uw)) = (Jpl*, G(v*) = (1v?, G(ul?).
From the property RK2 and Cauchy-Schwarz inequality we have

G < [ [ G ()]G ) w) o)
)

using

1/2 1/2
< | [[ocomitpwes ) | [[6e oo
D* D*
so that
)| < [ [ LA 26 (w2 P2z
]D)*
1/2 1/2
<| [ wrcipioees | | [ et
D D*
Hence R is negative by Cauchy-Schwarz inequality. (|

8. FINITE-DIMENSIONAL TEICHMULLER SPACES

Curvature properties of finite-dimensional Teichmiiller spaces were exten-
sively studied by Ahlfors [BRIRE], Royden [[Rov 4], and especially by Wolpert
[BAAIXH]. Here, for the Teichmiiller space T'(I') for a cofinite Fuchsian group I
we show how to get Wolpert’s explicit formulas from the curvature formulas
for the Hilbert manifold 7'(1), derived in Section B

First note that canonical embedding of a finite-dimensional complex man-
ifold 7'(I') into T'(1) is holomorphic with respect to the Banach manifold
structure on 7'(1) but not with respect to the Hilbert manifold structure on
T(1). Indeed, for a cofinite Fuchsian group I' the finite-dimensional vector
space Q7 HH(D*,T) is not a subspace of the Hilbert space H~11(D*) | but
rather

Q YD, )y n HVY DY) = {0}.

Thus the Weil-Petersson metric on 7'(I'), defined in Section &, is not a
pull-back of the Weil-Petersson metric on 7'(1). However, due to Lemma
E= we can represent the Petersson inner product on the tangent space at the
origin of T'(I') as an “average” of the inner products in 7'(1). Namely, using
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canonical complex anti-linear isomorphisms Q~11(D*, T') ~ Q~L1(D, ') and
H=L1(D*) ~ H=1Y(D), we have

Growr = [[ o)z = im Afﬂ;”])’) / [ wotz)ae:

D

T’T’p

7’—)1—

Here p,v € Q7H4(D, T) and p, = i, v = x,v, where x, is the character-
istic function of D, = {z € D : |z| < r}. In what follows we will denote by
(, )r the Petersson inner product (, Yyp in Q711(D), as well as the inner
product for the Hilbert space L%(I'\D, p(z)d*z). Since they are given by the
same formula, there would be no confusion. Moreover, for p € Q=11(D, T),
1l € LT\, p(2)d2-2).

Lemma 8.1. Let p € Q7 1Y(D) and v € L= (D) N LY(D, p(2)d?z). Then

(i) For0<r <1,

P(u,) € H™D) and P(u)(z) = O (1= 2P)?) as |s] > L.

(i)
lgllﬂ// (e )V p(2 Z—//Wp
Proof. Since
/IPurlp Z—// (1) fir p Z—// (k) ity p(2)d*z < 00,

P(uy) € H-M(D). Using pu(z) = ~LEEE 5202 ) (% = m)a, 2072 and (@),

we get

(1 _ |Z|2)2 o0 5 r2n—|—2 2r2n r2n—2 oy
Pl (z) = ——— 1217 ~na, _ n-3.
() = =S (g - 2 )

so that (1 — |z|*)72P(p,)(2) is continuous on |z| = 1.
To prove part (ii), consider the estimate

00— Pl 9 S [ 2

]D)\]D)T

=3l (1 = [2]*)? Z 2721 =)

n=1



CURVATURE PROPERTIES OF THE WEIL-PETERSSON METRIC ON T(1) 55

For fixed r the right hand side of this estimate is an increasing function of
|z|, so that

sup s = PG ) (1) < 3l (1~ T

and for fixed s,

lim sup |(1 - P(,)) ()] = 0.

r—1-— |Z|§5
Also for fixed r we have the estimate

[l = Ppr)lloo < 3llplloc-
Now since v € LY(D, p(z)d*z), for every € > 0 there exists 0 < s < 1 such

that
[ wpres <

D\Ds

and we obtain,

J[ = Py oty
D

<[]l = Pupll s+ [ [ 1= Pl o)
D,

D\D,

|2<s

< sup [( - P(u) (2)] / / 9] p(2) 822 + 3¢l
D

Passing to the limit r — 17, we get

r—1—

lim 4 [ a= Pl 7o) < 3l

Since ¢ is arbitrary, the result follows. O

Lemma 8.2. For u,v € Q~HY(D, T,

L AmD) S
o) = lim T S 4 | Pl Pwpte).

r—1—s—1—

Proof. Since p € Q~1H1(D, T) c Q~H1(D),

[ wenoteraz = [ [wpioriz = [ [ wPip.
D D D

According to part (i) of Lemma B, P(v,) € LY (D, p(z)d?z) for 0 < r < 1,
so that the result follows from part (ii) of Lemma B O
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Remark 8.3. The limits in Lemma B& can not be interchanged. Indeed, it

follows from part (ii) of Lemma B2l that for fixed s < 1 the limit » — 1 is
always zero.

In a neighborhood of the origin in 7T'(I') the Weil-Petersson metric is given

by
0 = [ [ PR PG )

T \D
1

where k € Q71(D, '), ||k]|oo is sufficiently small, and 'y = w, o' o wj

Lemma 8.4. Let p,v € Q VYD, T). Forrx € Q V(D T), ||k||oo sufficiently
small,

L AMD) :
(k) = lim_lim s 4 | PP ) PR, Ao )

Proof. First, we have

//P (R(P(ps), ) P(R(P(v,), ®))p(2)d*=
S R e

Since pP(v,) is bounded on D, and for ||s||s sufficiently small (1/2)p <
wip < (3/2)p, we conclude that pR(P(v,, r)) is also bounded on D. As the
result,

UU”L?%%W&M
R
<C//// 11__ ;1|4 dzd?u = wC < co.
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It follows from part (ii) of Lemma B2l that

Tim. / | P (R(P). m)p(=)d%
// // = wiP Vy H((Z))(;zﬁ)z(z)zdzzdzu
- / | PR ) PTG AT )
D

/ | PG 0 PERPwT 00 ()
_ 14 ////// 1_wﬁ o m (2) " dPud?od?
144 //

o [ ] e

Since p € Q7 YD, T) and w, oT ow;! =T, C PSU(1,1), it is easy to see
that A € Q~11(D, T). Using Lemma B3, we get

Now

where

i S / | P P o)
144
JJ
_ 1w 4///// 1_wﬁ L e; zlvi)zz(;L (2) "L d2ud?vd?=
Np D
- 144!///// 1_%; e 1; 1105_)22(5))4 (2) " dPud?vd?z
\D D

=[] PR ) PG T )

D

where we have used that the integrals above do not change if we let any one
of the integrations to range over ['\D while others range over D (cf. [ARIEZ]).
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The latter property follows from the fact that u, v and  are (=1, 1) tensors

for I', and the representation D = [ J, . v(I'\D). O
Theorem 8.5. For u, v,k € Q~HY(D, T,

0

% e=0 gMD (61‘{) :07

T | gunlen) = (um, Grwm))p + (9, Gr(lsl?) .
ooz | _, " 7 r 7 r

Proof. We will use Lemma B and Theorems E8and =3, provided one can
interchange %, %;5 with the limits. This can be done as in [ALIEZ] by

showing that limits of corresponding derivatives converge uniformly on ¢ in
a neighborhood of 0. We omit these standard arguments and concentrate
on actual computations.

For the first variation of the Weil-Petersson metric we get

d .. AM\D) 0
2 . — lim 1 <
gz | _, e = lim I Zpy ae| 97
Since P(us), P(v,) € H~Y1(D), we conclude from Theorem EZA that this is

identically zero.
Similarly, for the second variation we have

o2 L AM\D) &
9ege| 9w = Iim m D) e0e

Since P(v,), P(us) € H™HY(D) and x € Q7 4D, ') € Q75 (D), we get from
Theorem E=&

(0 Py (55

_ 9P i R

82
dc02

Gun(EK)

- A (P 0 PP )

By properties RK2 and RK4 in Section 4

[ 1ewwamiinpees ik [[ ] @ o))
D D

D

Il [ [ 1P @) o) < .
D

and by property RK3 G/(|«|?) is bounded on D, so that it follows from
Lemma B that

afgg o - AA((FHR (e, G(P()R) + (#P(), G 1K1 ) )

gup(er) = lim

Tt is for this case that we need the condition x c Q_l’l(D) in Theorem =&
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We have

i, GP ) = [ [ Mo
Dy
[ rateir@ipo
Dy

(
(P, G

where

L
o R e

and Ay, Ay € Q7 HH(D, T). Tt follows from Lemma 3 that

gulen) = [[ Mo [ [ xawit

8585 2 I
=2 4 / F/\! /D ([ R R R o
V2] [] st ot
D I\p D
=5+ 1.

As before, the integrals above do not change if we let any one of the integra-
tions to range over I'\D while others range over D. We have, using property

RK1 , (B3 and (1),

/ [ ][ ] nen % (2)dPud?od?

D \D

_ // // BIG (=, w) k() o {@p(w)p(2) Pud?=

D \D

=[] [] s wstuaiptptc) ot

D T\D
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Similarly,
=[] [[ s 66w k@ )i’
D T\D
=[] [[ s w k ptujpte)dtu’
\D I'\D
= (o, Gr(|s*))
and the assertion follows. O

Remark 8.6. Theorem B was proved by Wolpert [MValXd], and all results on
Ricci, sectional, and scalar curvatures for finite-dimensional Teichmiiller spaces
follow from it.

We conclude this section by deriving a formula for Ricci tensor different
from [MMQIXH], and indicating its application. Let uq,..., g be an orthonor-
mal basis of Q711(D,T'), which is a subspace of the Hilbert space L*(D,T)
of Beltrami differentials p for I' such that || € L*(I'\D,p(2)d?z). Let
P:L*DT) - Q (D, T) be the orthogonal projector. It follows from the
definition and representation (=) that P is an integral operator with kernel

- 12 -1 -1 Y (w
w) =Y (2 (w) = —p(z) ' p(w) 2(1;74

The Ricci tensor at the origin of 7'(I') is given by

d

Ry = ZR pipny = = Y (17, Gr(|pal ) + (ufin, Gr(viin))r)

n=1

zd: //// (2, 0) |t (w) [ p(w) p(2) d*wd? =

=L \"\D I'\D

+ ][] rom e o rwipp)ded

M\D T'\D
/D/ F/\g = w)%%p(w)‘lp(fa)d%d?z
] [ e e

where nothing changes if we let any of the integrations to range over I'\D
while other range over D.
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It is instructive to compare the Ricci curvatures of the finite-dimensional
Teichmiiller space T'(I') and that of the universal Teichmiiller space T'(1).

First, T'(I') is no longer a Ké&hler -Einstein manifold. Second, the sum over
I'in (BZW) can be transformed into the sum over the conjugacy classes of I'.
As is in [IEZUN], using variational formulas for the Selberg zeta-function,
we find that the contribution of hyperbolic conjugacy classes is the second
variation of the Selberg zeta-function at s = 2. The contribution of parabolic
conjugacy classes (if they are present) yields a new Kahler metric on 7'(T'),
introduced in EZ91]. The contribution of the identity element, as it follows

from Theorem EZEN, is

=[] [ nerEc e wptope) e

D [\D

_%////M(z)y(w)G(z,w)ﬁdz ﬁz-—%(w v)r.

D D

As the result, we obtain a local index theorem for families of d-operators
acting on quadratic differentials on Riemann surfaces, proved in [IZZ4d].
The above arguments interpret it as an “averaged form” of Theorem &
Detailed derivation of the local index theorem for families from (E=l) will be
presented elsewhere.

APPENDIX

Here we prove LemmaE3 Using the model H ~ U and (BE=Z), we get for
the second variation of @,

82
9=07 | _, Qu,ev)(2)

2 ] R
= Zié‘éi” S
=/ // R T
H7 ) 5|

Using Proposition B and property RK3, we immediately get that I, €
L?(U, p(2)d*z). Now using the Cauchy—Schwarz inequality, the identity

// [ — z|4 = Z'O(Z)’

p™(2) = L(2) + 12(2) + 13(2) + Lu(2).
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and the property that the Hilbert transform is an isometry on L?(C,d?z),
we get

p(z) %z

-2 ] Jf [ e
(e
(i vw?iz

122!\VH2

YL ]

uuuuu

4/ o= @>2<u— BE

d*zd?v < 36||v||2, || l]3-

Similarly, denoting by U the lower half-plane,

=3 ]| ] [ [ e
S ] ][ e e
Y ] e

L ]2
< 2 4 | 4 [ o = sl
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For the term I, we use the same identity as in the proof of Proposition B

1 _ (v—2)2 2(v—2)%(z - 2)
(v—u)?(u—2)?2 (v=—22(z—-w?(v—u)? (v-2)3(v—u)(z—u)?
n (z — 2)* 2(z — 2)%(v - 2) ‘
(v=2)2(z—uw)*(u—-2)? (v—2)P>(u-2z)(u-2z)?

As in the proof of Proposition B, the last two terms do not contribute to
15, and we obtain

ro=5e ] [] [ et St e
wS” // // // —z: (ﬂ) i>3<zzd;§g<2ﬁ2u>

= I5(z )+I6( ).

The L?-mnorm of [5 is estimated exactly as before and we get ||I5|3 <
36/[v]| %] ll3. Finally,

= [ ] Jf ] e e ] e
A ][] ][] e o

S I (] st
4/ :i:jz //| Z|| ||1;_u|2d2vd2u d2z.

Making a change of variables &

:; — v and =% — u, we obtain

|Z—Z|2// ||U 2 12 2//// 2 42
d vd < d d“u
4/ =P ) To—2Flv= u|2 v sl T "

372
= THVHZO-

8We could estimate I in the same way as I If v € H_l’l(U). However, for Theorem
B we only have v € Q_l’l(U).
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3123 |v||4
1ol < 22 e // / [ oz = a0l
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